Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Ask your questions and get detailed, reliable answers from our community of knowledgeable experts.
Sagot :
Let's break down the solution to the given question step by step.
### 3.1. Length of the Side of the Square:
Consider a piece of wire that is 10 meters long. Let the length of the wire used to make the square be [tex]\(x\)[/tex] meters.
To form a square, the wire is bent into 4 equal parts. Therefore, the length of one side of the square ([tex]\(s\)[/tex]) in terms of [tex]\(x\)[/tex] is:
[tex]\[ s = \frac{x}{4} \][/tex]
### 3.2. Sum of the Areas of the Square and the Rectangle:
Next, we need to show that the sum of the areas of the square and the rectangle is given by [tex]\(S(x) = -\frac{1}{8} x^2 + \frac{5}{4} x\)[/tex].
#### Area of the Square:
The area of the square ([tex]\(A_{\text{square}}\)[/tex]) is:
[tex]\[ A_{\text{square}} = s^2 = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \][/tex]
#### Area of the Rectangle:
The remaining length of the wire, that is not used for the square, is used for the rectangle. Therefore, the length of the wire used for the rectangle is:
[tex]\[ 10 - x \text{ meters} \][/tex]
Given that the width of the rectangle ([tex]\(w\)[/tex]) is the same as the side length of the square, we have:
[tex]\[ w = \frac{x}{4} \][/tex]
Let's denote the length of the rectangle as [tex]\(l\)[/tex]. The length and width of the rectangle must satisfy the perimeter equation:
[tex]\[ l + w + l + w = 10 - x \][/tex]
This simplifies to:
[tex]\[ 2l + 2w = 10 - x \][/tex]
Substituting [tex]\(w = \frac{x}{4}\)[/tex] into the equation:
[tex]\[ 2l + 2\left( \frac{x}{4} \right) = 10 - x \][/tex]
[tex]\[ 2l + \frac{x}{2} = 10 - x \][/tex]
[tex]\[ 2l = 10 - x - \frac{x}{2} \][/tex]
[tex]\[ 2l = 10 - \frac{3x}{2} \][/tex]
[tex]\[ l = \frac{10 - \frac{3x}{2}}{2} \][/tex]
[tex]\[ l = 5 - \frac{3x}{4} \][/tex]
The area of the rectangle ([tex]\(A_{\text{rectangle}}\)[/tex]) is:
[tex]\[ A_{\text{rectangle}} = l \cdot w = \left(5 - \frac{3x}{4}\right) \left(\frac{x}{4}\right) \][/tex]
[tex]\[ A_{\text{rectangle}} = \left(5 \cdot \frac{x}{4}\right) - \left(\frac{3x}{4} \cdot \frac{x}{4}\right) \][/tex]
[tex]\[ A_{\text{rectangle}} = \frac{5x}{4} - \frac{3x^2}{16} \][/tex]
#### Sum of the Areas:
The total area [tex]\(S(x)\)[/tex] is the sum of the areas of the square and rectangle:
[tex]\[ S(x) = A_{\text{square}} + A_{\text{rectangle}} \][/tex]
[tex]\[ S(x) = \frac{x^2}{16} + \left( \frac{5x}{4} - \frac{3x^2}{16} \right) \][/tex]
Combining like terms:
[tex]\[ S(x) = \frac{x^2}{16} - \frac{3x^2}{16} + \frac{5x}{4} \][/tex]
[tex]\[ S(x) = -\frac{2x^2}{16} + \frac{5x}{4} \][/tex]
[tex]\[ S(x) = -\frac{x^2}{8} + \frac{5x}{4} \][/tex]
Thus, we have shown that:
[tex]\[ S(x) = -\frac{1}{8} x^2 + \frac{5}{4} x \][/tex]
### 3.3. Maximizing the Sum of the Areas:
To find the value of [tex]\(x\)[/tex] that maximizes the sum of the areas, we need to find the critical points of the function [tex]\(S(x)\)[/tex].
First, we find the first derivative of [tex]\(S(x)\)[/tex]:
[tex]\[ S'(x) = \frac{d}{dx} \left( -\frac{1}{8} x^2 + \frac{5}{4} x \right) \][/tex]
[tex]\[ S'(x) = -\frac{1}{8} \cdot 2x + \frac{5}{4} \][/tex]
[tex]\[ S'(x) = -\frac{x}{4} + \frac{5}{4} \][/tex]
Set the first derivative equal to zero to find the critical points:
[tex]\[ -\frac{x}{4} + \frac{5}{4} = 0 \][/tex]
[tex]\[ -\frac{x}{4} = -\frac{5}{4} \][/tex]
[tex]\[ x = 5 \][/tex]
Next, to confirm that this value of [tex]\(x\)[/tex] is a maximum, we can check the second derivative:
[tex]\[ S''(x) = \frac{d}{dx} \left( -\frac{x}{4} + \frac{5}{4} \right) \][/tex]
[tex]\[ S''(x) = -\frac{1}{4} \][/tex]
Since [tex]\(S''(x) = -\frac{1}{4}\)[/tex] is negative, the function [tex]\(S(x)\)[/tex] is concave down at [tex]\(x = 5\)[/tex], which means [tex]\(x = 5\)[/tex] is a local maximum.
Thus, the value of [tex]\(x\)[/tex] for which the sum of the areas is maximum is:
[tex]\[ x = \frac{20}{3} \text{ meters} \][/tex]
[tex]\[ x \approx 6.67 \text{ meters} \][/tex]
### 3.1. Length of the Side of the Square:
Consider a piece of wire that is 10 meters long. Let the length of the wire used to make the square be [tex]\(x\)[/tex] meters.
To form a square, the wire is bent into 4 equal parts. Therefore, the length of one side of the square ([tex]\(s\)[/tex]) in terms of [tex]\(x\)[/tex] is:
[tex]\[ s = \frac{x}{4} \][/tex]
### 3.2. Sum of the Areas of the Square and the Rectangle:
Next, we need to show that the sum of the areas of the square and the rectangle is given by [tex]\(S(x) = -\frac{1}{8} x^2 + \frac{5}{4} x\)[/tex].
#### Area of the Square:
The area of the square ([tex]\(A_{\text{square}}\)[/tex]) is:
[tex]\[ A_{\text{square}} = s^2 = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \][/tex]
#### Area of the Rectangle:
The remaining length of the wire, that is not used for the square, is used for the rectangle. Therefore, the length of the wire used for the rectangle is:
[tex]\[ 10 - x \text{ meters} \][/tex]
Given that the width of the rectangle ([tex]\(w\)[/tex]) is the same as the side length of the square, we have:
[tex]\[ w = \frac{x}{4} \][/tex]
Let's denote the length of the rectangle as [tex]\(l\)[/tex]. The length and width of the rectangle must satisfy the perimeter equation:
[tex]\[ l + w + l + w = 10 - x \][/tex]
This simplifies to:
[tex]\[ 2l + 2w = 10 - x \][/tex]
Substituting [tex]\(w = \frac{x}{4}\)[/tex] into the equation:
[tex]\[ 2l + 2\left( \frac{x}{4} \right) = 10 - x \][/tex]
[tex]\[ 2l + \frac{x}{2} = 10 - x \][/tex]
[tex]\[ 2l = 10 - x - \frac{x}{2} \][/tex]
[tex]\[ 2l = 10 - \frac{3x}{2} \][/tex]
[tex]\[ l = \frac{10 - \frac{3x}{2}}{2} \][/tex]
[tex]\[ l = 5 - \frac{3x}{4} \][/tex]
The area of the rectangle ([tex]\(A_{\text{rectangle}}\)[/tex]) is:
[tex]\[ A_{\text{rectangle}} = l \cdot w = \left(5 - \frac{3x}{4}\right) \left(\frac{x}{4}\right) \][/tex]
[tex]\[ A_{\text{rectangle}} = \left(5 \cdot \frac{x}{4}\right) - \left(\frac{3x}{4} \cdot \frac{x}{4}\right) \][/tex]
[tex]\[ A_{\text{rectangle}} = \frac{5x}{4} - \frac{3x^2}{16} \][/tex]
#### Sum of the Areas:
The total area [tex]\(S(x)\)[/tex] is the sum of the areas of the square and rectangle:
[tex]\[ S(x) = A_{\text{square}} + A_{\text{rectangle}} \][/tex]
[tex]\[ S(x) = \frac{x^2}{16} + \left( \frac{5x}{4} - \frac{3x^2}{16} \right) \][/tex]
Combining like terms:
[tex]\[ S(x) = \frac{x^2}{16} - \frac{3x^2}{16} + \frac{5x}{4} \][/tex]
[tex]\[ S(x) = -\frac{2x^2}{16} + \frac{5x}{4} \][/tex]
[tex]\[ S(x) = -\frac{x^2}{8} + \frac{5x}{4} \][/tex]
Thus, we have shown that:
[tex]\[ S(x) = -\frac{1}{8} x^2 + \frac{5}{4} x \][/tex]
### 3.3. Maximizing the Sum of the Areas:
To find the value of [tex]\(x\)[/tex] that maximizes the sum of the areas, we need to find the critical points of the function [tex]\(S(x)\)[/tex].
First, we find the first derivative of [tex]\(S(x)\)[/tex]:
[tex]\[ S'(x) = \frac{d}{dx} \left( -\frac{1}{8} x^2 + \frac{5}{4} x \right) \][/tex]
[tex]\[ S'(x) = -\frac{1}{8} \cdot 2x + \frac{5}{4} \][/tex]
[tex]\[ S'(x) = -\frac{x}{4} + \frac{5}{4} \][/tex]
Set the first derivative equal to zero to find the critical points:
[tex]\[ -\frac{x}{4} + \frac{5}{4} = 0 \][/tex]
[tex]\[ -\frac{x}{4} = -\frac{5}{4} \][/tex]
[tex]\[ x = 5 \][/tex]
Next, to confirm that this value of [tex]\(x\)[/tex] is a maximum, we can check the second derivative:
[tex]\[ S''(x) = \frac{d}{dx} \left( -\frac{x}{4} + \frac{5}{4} \right) \][/tex]
[tex]\[ S''(x) = -\frac{1}{4} \][/tex]
Since [tex]\(S''(x) = -\frac{1}{4}\)[/tex] is negative, the function [tex]\(S(x)\)[/tex] is concave down at [tex]\(x = 5\)[/tex], which means [tex]\(x = 5\)[/tex] is a local maximum.
Thus, the value of [tex]\(x\)[/tex] for which the sum of the areas is maximum is:
[tex]\[ x = \frac{20}{3} \text{ meters} \][/tex]
[tex]\[ x \approx 6.67 \text{ meters} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.