Join the growing community of curious minds on IDNLearn.com and get the answers you need. Ask anything and receive comprehensive, well-informed responses from our dedicated team of experts.

Using the method of mathematical induction to prove that equalities are true for values ​​of n indicated:

2²+4²+6²+...+(2n)²=[tex] \frac{2n(n+1)(2n+1)}{3} ,n \geq 1.[/tex]


Sagot :

[tex]2^2+4^2+6^2+...(2n)^2=\frac{2n(n+1)(2n+1)}{3};\ n\geq1\\\\chek\ for\ n=1:\\L=2^2=4;\ R=\frac{2\cdot1(1+1)(2\cdot1+1)}{3}=\frac{2\cdot2\cdot3}{3}=4\\L=R\\-----------------------\\ assumption\ for\ n=k\\2^2+4^2+6^2+...+(2k)^2=\frac{2k(k+1)(2k+1)}{3}\\-----------------------\\thesis\ for\ n=k+1\\2^2+4^2+6^2+...+(2k)^2+[2(k+1)]^2=\frac{2(k+1)(k+1+1)[2(k+1)+1]}{3}\\-----------------------[/tex]
[tex]proff:\\L=2^2+4^2+6^2+...+(2k)^2+(2k+2)^2=\frac{2k(k+1)(2k+1)}{3}+(2k+2)^2\\\\=\frac{(2k^2+2k)(2k+1)}{3}+\frac{3(2k+2)^2}{3}=\frac{4k^3+2k^2+4k^2+2k+3(4k^2+8k+4)}{3}\\\\=\frac{4k^3+6k^2+2k+12k^2+24k+12}{3}=\boxed{\frac{4k^3+18k^2+26k+12}{3}}\\\\R=\frac{2(k+1)(k+1+1)[2(k+1)+1]}{3}=\frac{(2k+2)(k+2)(2k+2+1)}{3}\\\\=\frac{(2k^2+4k+2k+4)(2k+3)}{3}=\frac{(2k^2+6k+4)(2k+3)}{3}=\frac{4k^3+6k^2+12k^2+18k+8k+12}{3}\\\\=\boxed{\frac{4k^3+18k^2+26k+12}{3}}\\\\L=R[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.