Find solutions to your problems with the expert advice available on IDNLearn.com. Our platform offers reliable and detailed answers, ensuring you have the information you need.

Your challenge is to create a cylindrical can that minimizes the cost of materials but must hold 100 cubic inches. The top and bottom of the can cost $0.014 per square inch, while the sides cost only $0.007 per square inch. Show how you did it too?

Sagot :

Answer:

[tex]Radius = 1.997\ in[/tex] and [tex]Height = 7.987\ in[/tex]

[tex]Cost = \$1.05[/tex]

Step-by-step explanation:

Given

[tex]Volume = 100in^3[/tex]

[tex]Cost =\$0.014[/tex] -- Top and Bottom

[tex]Cost =\$0.007[/tex] --- Sides

Required

What dimension of the cylinder minimizes the cost

The volume (V) of a cylinder is:

[tex]V = \pi r^2h[/tex]

Substitute 100 for V

[tex]100 = \pi r^2h[/tex]

Make h the subject

[tex]h = \frac{100 }{\pi r^2}[/tex]

The surface area (A) of a cylinder is:

[tex]A = 2\pi r^2 + 2\pi rh[/tex]

Where

[tex]Top\ and\ bottom = 2\pi r^2[/tex]

[tex]Sides = 2\pi rh[/tex]

So, the cost of the surface area is:

[tex]C = 2\pi r^2 * 0.014+ 2\pi rh * 0.007[/tex]

[tex]C = 2\pi r(r * 0.014+ h * 0.007)[/tex]

[tex]C = 2\pi r(0.014r+ 0.007h)[/tex]

Substitute [tex]h = \frac{100 }{\pi r^2}[/tex]

[tex]C = 2\pi r(0.014r+ 0.007*\frac{100 }{\pi r^2})[/tex]

[tex]C = 2\pi r(0.014r+ \frac{0.007*100 }{\pi r^2})[/tex]

[tex]C = 2\pi r(0.014r+ \frac{0.7}{\pi r^2})[/tex]

[tex]C = 2\pi (0.014r^2+ \frac{0.7}{\pi r})[/tex]

Open bracket

[tex]C = 2\pi *0.014r^2+ 2\pi *\frac{0.7}{\pi r}[/tex]

[tex]C = 0.028\pi *r^2+ \frac{2\pi *0.7}{\pi r}[/tex]

[tex]C = 0.028\pi *r^2+ \frac{2 *0.7}{r}[/tex]

[tex]C = 0.028\pi *r^2+ \frac{1.4}{r}[/tex]

[tex]C = 0.028\pi r^2+ \frac{1.4}{r}[/tex]

To minimize, we differentiate C w.r.t r and set the result to 0

[tex]C' = 0.056\pi r - \frac{1.4}{r^2}[/tex]

Set to 0

[tex]0 = 0.056\pi r - \frac{1.4}{r^2}[/tex]

Collect Like Terms

[tex]0.056\pi r = \frac{1.4}{r^2}[/tex]

Cross Multiply

[tex]0.056\pi r *r^2= 1.4[/tex]

[tex]0.056\pi r^3= 1.4[/tex]

Make [tex]r^3[/tex] the subject

[tex]r^3= \frac{1.4}{0.056\pi }[/tex]

[tex]r^3= \frac{1.4}{0.056 * 3.14}[/tex]

[tex]r^3= \frac{1.4}{0.17584}[/tex]

[tex]r^3= 7.96178343949[/tex]

Take cube roots of both sides

[tex]r= \sqrt[3]{7.96178343949}[/tex]

[tex]r= 1.997[/tex]

Recall that:

[tex]h = \frac{100 }{\pi r^2}[/tex]

[tex]h = \frac{100 }{3.14 * 1.997^2}[/tex]

[tex]h = \frac{100 }{12.52}[/tex]

[tex]h = 7.987[/tex]

Hence, the dimensions that minimizes the cost are:

[tex]Radius = 1.997\ in[/tex] and [tex]Height = 7.987\ in[/tex]

To calculate the cost, we have:

[tex]C = 2\pi r(0.014r+ 0.007h)[/tex]

[tex]C = 2* 3.14 * 1.997 * (0.014*1.997+ 0.007*7.987)[/tex]

[tex]Cost = \$1.05[/tex]