From everyday questions to specialized queries, IDNLearn.com has the answers. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.

A cylindrical specimen of steel has an original diameter of 12.8 mm. It is tested in tension its engineering fracture strength is found to be 460 MPa. If the cross-sectional diameter at fracture is 10.7 mm, determine (max. pts. 8): a. The ductility in terms of percent reduction in area b. The true stress at fracture

Sagot :

Answer:

a) The ductility = -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) the true stress at fracture is 658.26 Mpa

Explanation:

Given that;

Original diameter [tex]d_{o}[/tex] = 12.8 mm

Final diameter [tex]d_{f}[/tex] = 10.7

Engineering stress  [tex]\alpha _{E}[/tex] = 460 Mpa

a) determine The ductility in terms of percent reduction in area;

Ai = π/4([tex]d_{o}[/tex] )²  ; Ag = π/4([tex]d_{f}[/tex] )²

% = π/4 [ ( ([tex]d_{f}[/tex] )² - ([tex]d_{o}[/tex] )²) / ( π/4  ([tex]d_{o}[/tex] )²) ]

= ( ([tex]d_{f}[/tex] )² - ([tex]d_{o}[/tex] )²) / ([tex]d_{o}[/tex] )² × 100

we substitute

= [( (10.7)² - (12.8)²) / (12.8)² ] × 100

= [(114.49 - 163.84) / 163.84 ] × 100

= - 0.3012 × 100

= -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) The true stress at fracture;

True stress  [tex]\alpha _{T}[/tex] = [tex]\alpha _{E}[/tex] ( 1 +  [tex]E_{E}[/tex] )

[tex]E_{E}[/tex]  is engineering strain

[tex]E_{E}[/tex]  = dL / Lo

= (do² - df²) / df² = (12.8² - 10.7²) / 10.7² = (163.84 - 114.49) / 114.49

= 49.35 / 114.49  

[tex]E_{E}[/tex] = 0.431

so we substitute the value of [tex]E_{E}[/tex]  into our initial equation;

True stress  [tex]\alpha _{T}[/tex] = 460 ( 1 +  0.431)

True stress  [tex]\alpha _{T}[/tex] = 460 (1.431)

True stress  [tex]\alpha _{T}[/tex] = 658.26 Mpa

Therefore, the true stress at fracture is 658.26 Mpa