Join the growing community of curious minds on IDNLearn.com. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.
Sagot :
Answer:
Assume that [tex]g =9.81\; \rm m\cdot s^{-1}[/tex], and that the air resistance on the stone is negligible.
a.
Height of the stone: [tex]389.5\; \rm m[/tex] (above the ground.)
Velocity of the stone: [tex]\left(-110.5\; \rm m \cdot s^{-1}\right)[/tex] (the stone is travelling downwards.)
b.
Height of the stone: [tex]629.5\; \rm m[/tex] (above the ground.)
Velocity of the stone: [tex]\left(-86.5\; \rm m \cdot s^{-1}\right)[/tex] (the stone is travelling downwards.)
Explanation:
If air resistance on the stone is negligible, the stone would be accelerating downwards at a constant [tex]a = -g = -9.81\; \rm m \cdot s^{-2}[/tex].
Let [tex]h_0[/tex] denote the initial height of the stone (height of the stone at [tex]t = 0[/tex].)
Similarly, let [tex]v_0[/tex] denote the initial velocity of the stone.
Before the stone reaches the ground, the height [tex]h[/tex] (in meters) of the stone at time [tex]t[/tex] (in seconds) would be:
[tex]\displaystyle h(t) = -\frac{1}{2}\, g \cdot t^{2} + v_0 \cdot t + h_0[/tex].
Similarly, before the stone reaches the ground, the velocity [tex]v[/tex] (in meters-per-second) of the stone at time [tex]t[/tex] (in seconds) would be:
[tex]v(t) = -g\cdot t + v_0[/tex].
In section a., [tex]h_0 = 1000\; \rm m[/tex] while [tex]v_0 = -12\; \rm m\cdot s^{-1}[/tex] (the stone is initially travelling downwards.) Evaluate both [tex]h(t)[/tex] and [tex]v(t)[/tex] for [tex]t = 10\; \rm m \cdot s^{-1}[/tex]:
[tex]\begin{aligned} h(t) &= -\frac{1}{2}\, g \cdot t^{2} + v_0 \cdot t + h_0 \\ &= -\frac{1}{2}\ \times 9.81\; \rm m\cdot s^{-2}\times (10\; \rm s)^{2} \\&\quad\quad + \left(-12\; \rm m \cdot s^{-1}\right) \times 10\; \rm s + 1000\; \rm m \\[0.5em] &= 389.5\; \rm m \end{aligned}[/tex].
Indeed, the value of [tex]h(t)[/tex] at [tex]t = 10\; \rm m \cdot s^{-1}[/tex] is greater than zero. The stone hasn't yet hit the ground, and both the representation for the height of the stone and that for the velocity of the stone are valid.
[tex]\begin{aligned} v(t) &= -g\cdot t + v_0 \\ &= -9.81\; \rm m\cdot s^{-2}\times 10\; \rm s - 12\; \rm m\cdot s^{-1} \\ &= -110.5\; \rm m \cdot s^{-1} \end{aligned}[/tex].
The value of [tex]v(t)[/tex] at [tex]t = 10\; \rm m \cdot s^{-1}[/tex] is negative, meaning that the stone would be travelling downwards at that time.
In section b., [tex]h_0 = 1000\; \rm m[/tex] while [tex]v_0 = 12\; \rm m\cdot s^{-1}[/tex] (the stone is initially travelling upwards.) Evaluate both [tex]h(t)[/tex] and [tex]v(t)[/tex] for [tex]t = 10\; \rm m \cdot s^{-1}[/tex]:
[tex]\begin{aligned} h(t) &= -\frac{1}{2}\, g \cdot t^{2} + v_0 \cdot t + h_0 \\ &= -\frac{1}{2}\ \times 9.81\; \rm m\cdot s^{-2}\times (10\; \rm s)^{2} \\&\quad\quad + 12\; \rm m \cdot s^{-1} \times 10\; \rm s + 1000\; \rm m \\[0.5em] &= 629.5\; \rm m \end{aligned}[/tex].
Verify that the value of [tex]h(t)[/tex] at [tex]t = 10\; \rm m \cdot s^{-1}[/tex] is indeed greater than zero.
[tex]\begin{aligned} v(t) &= -g\cdot t + v_0 \\ &= -9.81\; \rm m\cdot s^{-2}\times 10\; \rm s + 12\; \rm m\cdot s^{-1} \\ &= -86.5\; \rm m \cdot s^{-1} \end{aligned}[/tex].
Similarly, the value of [tex]v(t)[/tex] at [tex]t = 10\; \rm m \cdot s^{-1}[/tex] is negative because the stone would be travelling downwards at that time.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.