Get the answers you've been searching for with IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.


Find the magnitude of the sum
of these two vectors:
5.00 mA,
30.0°
B4
6.00 m
magnitude (m)​


Find The Magnitude Of The Sumof These Two Vectors500 MA300B4600 Mmagnitude M class=

Sagot :

Answer:

Approximately [tex]3.01\; \rm m[/tex].

Explanation:

Decompose each vector into the sum of two vectors: a horizontal one (parallel to the arrow that points to the right) and a vertical one (parallel the arrow that points upwards.)

Vector [tex]\sf A[/tex] is horizontal and is at an angle of [tex]0^\circ[/tex] with the horizon.  

  • Horizontal component of vector [tex]\sf A[/tex]: to the right, with a length of [tex]5.00\; \rm m \cdot \cos\left(0^\circ \right) = 5.00\; \rm m[/tex].
  • Vertical component of vector [tex]\sf A[/tex]: [tex]5.00\; \rm m \cdot \sin\left(0^\circ \right) = 0\; \rm m[/tex].

Vector [tex]\sf B[/tex] is at an angle of [tex]30^\circ[/tex] below the horizon.

  • Horizontal component of vector [tex]\sf B[/tex]: to the right, with a length of [tex]\displaystyle 6.00\; \rm m \cdot \cos\left(30^\circ \right) = (6.00\; \rm m) \times \frac{\sqrt{3}}{2}\approx 5.19615\; \rm m[/tex].
  • Vertical component of vector [tex]\sf B[/tex]: downwards, with a length of[tex]\displaystyle 6.00\; \rm m \cdot \sin\left(30^\circ \right) = 6.00\; \rm m \times \frac{1}{2} = 3.00\; \rm m[/tex].

Calculate the sum of vector [tex]\sf A[/tex] and vector [tex]\sf B[/tex].

The horizontal component of vector [tex]\sf A[/tex] and vector [tex]\sf B[/tex] are opposite to one another. Therefore, the length of the horizontal component of [tex]\sf (A + B)[/tex] would be the difference between the length of the horizontal components of vector [tex]\sf A\![/tex] and of vector [tex]\sf B\![/tex]:

[tex]\displaystyle (6.00\; \rm m) \times \frac{\sqrt{3}}{2} - 5.00\; \rm m \approx 0.196152\; \rm m[/tex].

The length of the vertical component of vector [tex]\sf A[/tex] is [tex]0\; \rm m[/tex]. Therefore, the length of the vertical component of [tex]\sf (A + B)[/tex] would be equal to the length of the vertical component of vector [tex]\sf B[/tex], [tex]\displaystyle 6.00\; \rm m \times \frac{1}{2} = 3.00\; \rm m[/tex].

Therefore, the length of the horizontal and vertical component of [tex]\sf (A + B)[/tex] are approximately [tex]0.196152\; \rm m[/tex] and [tex]3.00\; \rm m[/tex], respectively. The length of vector [tex]\sf (A + B)\![/tex] would be approximately:

[tex]\displaystyle \sqrt{(0.196152\; \rm m)^{2} + (3.00\; \rm m)^{2}} \approx 3.01\; \rm m[/tex].