IDNLearn.com provides a seamless experience for finding the answers you need. Get accurate and detailed answers to your questions from our dedicated community members who are always ready to help.
Sagot :
Step-by-step explanation:
1. Rewrite this in the form y'(x)+p(x)y(x)=q(x)
x³f' - x = xf +1
x³f' -xf - x = 1
x³f' -xf = 1+x
f' -(x/x³)f=(1+x)/x³
f' -(1/x²)f=(1+x)/x³
So in our case, p(x)=-(1/x²) and q(x)=(1+x)/x³
2. Find the integrating factor
The integrating factor, μ, is equal to [tex]e^{\int\limits {P(x)} \, dx[/tex].
μ = [tex]e^{\int\limits {P(x)} \, dx[/tex]
μ = [tex]e^{\int\limits {-1/x^{2} } \, dx[/tex]
μ = [tex]e^{1/x}[/tex]
3. Multiply equation by the integrating factor
f' - [tex]\frac{1}{x^{2} }[/tex]f = [tex]\frac{1+x}{x^{3} }[/tex]
[tex]e^{1/x}[/tex]f' - [tex]e^{1/x}[/tex][tex]\frac{1}{x^{2} }[/tex]f = [tex]e^{1/x}[/tex] [tex]\frac{1+x}{x^{3} }[/tex]
4. Apply product rule
Consider the product rule: (a⋅b)'=a'⋅b+b'⋅a
In our case, we could say a=[tex]e^{1/x}[/tex] and b=f [Note that ([tex]e^{1/x}[/tex])'=[tex]e^{1/x}[/tex][tex]\frac{1}{x^{2} }[/tex]]
Therefore...
[tex]e^{1/x}[/tex]f' - [tex]e^{1/x}[/tex][tex]\frac{1}{x^{2} }[/tex]f = ([tex]e^{1/x}[/tex] f )'
5. Solve
([tex]e^{1/x}[/tex] f )' = [tex]e^{1/x}[/tex] [tex]\frac{1+x}{x^{3} }[/tex]
[tex]e^{1/x}[/tex] f = ∫ ([tex]e^{1/x}[/tex] [tex]\frac{1+x}{x^{3} }[/tex]) dx
[tex]e^{1/x}[/tex] f = ∫ ([tex]e^{1/x}[/tex]( [tex]\frac{1}{x^{3} }+\frac{1}{x^{2} }[/tex])) dx
[tex]e^{1/x}[/tex] f = ∫ [tex]\frac{e^{1/x} }{x^{3} }+\frac{e^{1/x}}{x^{2} }[/tex] dx
[note the sum rule: ∫(a+b)=∫a+∫b ]
[tex]e^{1/x}[/tex] f = ∫ [tex]\frac{e^{1/x} }{x^{3} }[/tex]dx+ ∫ [tex]\frac{e^{1/x}}{x^{2} }[/tex] dx
[tex]e^{1/x}[/tex] f = (-[tex]\frac{e^{1/x} }{x }[/tex]+[tex]e^{1/x}[/tex] )+(-[tex]e^{1/x}[/tex]) +C [step by step for integrating[tex]\frac{e^{1/x} }{x^{3} }[/tex]and[tex]\frac{e^{1/x}}{x^{2} }[/tex] below]
[tex]e^{1/x}[/tex] f = -[tex]\frac{e^{1/x} }{x }[/tex] +C
f = -[tex]\frac{1 }{x }[/tex] +[tex]\frac{C}{e^{1/x}}[/tex]
f = [tex]\frac{C}{e^{1/x}}[/tex] - [tex]\frac{1 }{x }[/tex]
C is just any constant, so for our purposes, let's let C equal 1.
f = [tex]\frac{1}{e^{1/x}}[/tex] - [tex]\frac{1 }{x }[/tex]
[note that [tex]\frac{1}{a^{b} }[/tex]=a⁻ᵇ]
f= [tex]e^{-1/x}[/tex] - [tex]\frac{1 }{x }[/tex]
QED
Below is a full explanation on integrating [tex]\frac{e^{1/x} }{x^{3} }[/tex]and[tex]\frac{e^{1/x}}{x^{2} }[/tex] , I didn't put it above as there was already a bunch of info and it's pretty long
Solving ∫[tex]\frac{e^{1/x} }{x^{3} }[/tex]dx (u-substitution)
Let u =1/x. Therefore [tex]\frac{du}{dx}[/tex] = 1/x² → du = 1/x² dx → dx = -x² du
Therefore, ∫[tex]\frac{e^{1/x} }{x^{3} }[/tex]dx = ∫[tex]\frac{e^{u} }{x^{3} }[/tex](-x²) du
∫[tex]\frac{e^{u} }{x^{3} }[/tex](-x²) du
∫- [tex]\frac{e^{u} }{x} }[/tex]du
Note that if u=1/x, x=1/u
∫- [tex]\frac{e^{u} }{x} }[/tex]du
∫- [tex]\frac{e^{u} }{1/u} }[/tex]du
- ∫ [tex]e^{u}[/tex]u du
Note that ∫ab'=ab-∫a'b. Here, a=u, b= [tex]e^{u}[/tex]. Therefore, a'=u'=1, b'= [tex]e^{u}[/tex].
So, - ∫ [tex]e^{u}[/tex]u du = - ([tex]e^{u}[/tex]u-- ∫ [tex]e^{u}[/tex] du) = -([tex]e^{u}[/tex]u-[tex]e^{u}[/tex]) = -[tex]e^{u}[/tex]u+[tex]e^{u}[/tex]
Now sub 1/x back in for u: -[tex]e^{u}[/tex]u+[tex]e^{u}[/tex] = -[tex]e^{1/x}[/tex](1/x) +[tex]e^{1/x}[/tex] = [tex]\frac{-e^{1/x} }{x}[/tex]+[tex]e^{1/x}[/tex]
So ∫[tex]\frac{e^{1/x} }{x^{3} }[/tex]dx = [tex]\frac{-e^{1/x} }{x}[/tex]+[tex]e^{1/x}[/tex]
Solving ∫ [tex]\frac{e^{1/x}}{x^{2} }[/tex] dx (u-substitution)
Let u =1/x again. Therefore, as we've seen above, [tex]\frac{du}{dx}[/tex] = 1/x² → du = 1/x² dx → dx = -x² du.
Therefore, ∫[tex]\frac{e^{1/x} }{x^{2} }[/tex]dx = ∫[tex]\frac{e^{u} }{x^{2} }[/tex](-x²) du = ∫-[tex]e^{u}[/tex] du = -∫[tex]e^{u}[/tex] du = - [tex]e^{u}[/tex].
Sub 1/x back in for u: - [tex]e^{u}[/tex]= - [tex]e^{1/x}[/tex]
So ∫ [tex]\frac{e^{1/x}}{x^{2} }[/tex] dx = [tex]e^{1/x}[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.