Find the best answers to your questions with the help of IDNLearn.com's expert contributors. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.

Solid fats are more likely to raise blood cholesterol levels than liquid fats. Suppose a nutritionist analyzed the percentage of saturated fat for a sample of 6 brands of stick margarine (solid fat) and for a sample of 6 brands of liquid margarine and obtained the following results: Exam Image Exam Image We want to determine if there a significant difference in the average amount of saturated fat in solid and liquid fats. What is the test statistic

Sagot :

Answer:

[tex]t = 31.29[/tex]

Step-by-step explanation:

Given

[tex]\begin{array}{ccccccc}{Stick} & {25.8} & {26.9} & {26.2} & {25.3} & {26.7}& {26.1} \ \\ {Liquid} & {16.9} & {17.4} & {16.8} & {16.2} & {17.3}& {16.8} \ \end{array}[/tex]

Required

Determine the test statistic

Let the dataset of stick be A and Liquid be B.

We start by calculating the mean of each dataset;

[tex]\bar x =\frac{\sum x}{n}[/tex]

n, in both datasets in 6

For A

[tex]\bar x_A =\frac{25.8+26.9+26.2+25.3+26.7+26.1}{6}[/tex]

[tex]\bar x_A =\frac{157}{6}[/tex]

[tex]\bar x_A =26.17[/tex]

For B

[tex]\bar x_B =\frac{16.9+17.4+16.8+16.2+17.3+16.8}{6}[/tex]

[tex]\bar x_B =\frac{101.4}{6}[/tex]

[tex]\bar x_B =16.9[/tex]

Next, calculate the sample standard deviation

This is calculated using:

[tex]s = \sqrt{\frac{\sum(x - \bar x)^2}{n-1}}[/tex]

For A

[tex]s_A = \sqrt{\frac{\sum(x - \bar x_A)^2}{n-1}}[/tex]

[tex]s_A = \sqrt{\frac{(25.8-26.17)^2+(26.9-26.17)^2+(26.2-26.17)^2+(25.3-26.17)^2+(26.7-26.17)^2+(26.1-26.17)^2}{6-1}}[/tex]

[tex]s_A = \sqrt{\frac{1.7134}{5}}[/tex]

[tex]s_A = \sqrt{0.34268}[/tex]

[tex]s_A = 0.5854[/tex]  

For B

[tex]s_B = \sqrt{\frac{\sum(x - \bar x_B)^2}{n-1}}[/tex]

[tex]s_B = \sqrt{\frac{(16.9 - 16.9)^2+(17.4- 16.9)^2+(16.8- 16.9)^2+(16.2- 16.9)^2+(17.3- 16.9)^2+(16.8- 16.9)^2}{6-1}}[/tex]

[tex]s_B = \sqrt{\frac{0.92}{5}}[/tex]

[tex]s_B = \sqrt{0.184}[/tex]

[tex]s_B = 0.4290[/tex]

Calculate the pooled variance

[tex]S_p^2 = \frac{(n_A - 1)*s_A^2 + (n_B - 1)*s_B^2}{(n_A+n_B-2)}[/tex]

[tex]S_p^2 = \frac{(6 - 1)*0.5854^2 + (6 - 1)*0.4290^2}{(6+6-2)}[/tex]

[tex]S_p^2 = \frac{2.6336708}{10}[/tex]

[tex]S_p^2 = 0.2634[/tex]

Lastly, calculate the test statistic using:

[tex]t = \frac{(\bar x_A - \bar x_B) - (\mu_A - \mu_B)}{\sqrt{S_p^2/n_A +S_p^2/n_B}}[/tex]

We set

[tex]\mu_A = \mu_B[/tex]

So, we have:

[tex]t = \frac{(\bar x_A - \bar x_B) - (\mu_A - \mu_A)}{\sqrt{S_p^2/n_A +S_p^2/n_B}}[/tex]

[tex]t = \frac{(\bar x_A - \bar x_B) }{\sqrt{S_p^2/n_A +S_p^2/n_B}}[/tex]

The equation becomes

[tex]t = \frac{(26.17 - 16.9) }{\sqrt{0.2634/6 +0.2634/6}}[/tex]

[tex]t = \frac{9.27}{\sqrt{0.0878}}[/tex]

[tex]t = \frac{9.27}{0.2963}[/tex]

[tex]t = 31.29[/tex]

The test statistic is 31.29