Experience the power of community-driven knowledge on IDNLearn.com. Get prompt and accurate answers to your questions from our experts who are always ready to help.

find m to cos²x-(m²-3)sinx+2m²-3=0 have root

Sagot :

Answer:

[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex] would ensure that at least one real root exists for this equation when solving for [tex]x[/tex].

Step-by-step explanation:

Apply the Pythagorean identity [tex]1 - \sin^{2}(x) = \cos^{2}(x)[/tex] to replace the cosine this equation with sine:

[tex](1 - \sin^{2}(x)) - (m^2 - 3)\, \sin(x) + 2\, m^2 - 3 = 0[/tex].

Multiply both sides by [tex](-1)[/tex] to obtain:

[tex]-1 + \sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 3 = 0[/tex].

[tex]\sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 2 = 0[/tex].

If [tex]y = \sin(x)[/tex], then this equation would become a quadratic equation about [tex]y[/tex]:

[tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex].

  • [tex]a = 1[/tex].
  • [tex]b = m^{2} - 3[/tex].
  • [tex]c = -2\, m^{2} + 2[/tex].

However, [tex]-1 \le \sin(x) \le 1[/tex] for all real [tex]x[/tex].

Hence, the value of [tex]y[/tex] must be between [tex](-1)[/tex] and [tex]1[/tex] (inclusive) for the original equation to have a real root when solving for [tex]x[/tex].

Determinant of this quadratic equation about [tex]y[/tex]:

[tex]\begin{aligned} & b^{2} - 4\, a\, c \\ =\; & (m^{2} - 3)^{2} - 4 \cdot (-2\, m^{2} + 2) \\ =\; & m^{4} - 6\, m^{2} + 9 - (-8\, m^{2} + 8) \\ =\; & m^{4} - 6\, m^{2} + 9 + 8\, m^{2} - 8 \\ =\; & m^{4} + 2\, m^{2} + 1 \\ =\; &(m^2 + 1)^{2} \end{aligned}[/tex].

Hence, when solving for [tex]y[/tex], the roots of [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] in terms of [tex]m[/tex] would be:

[tex]\begin{aligned}y_1 &= \frac{-b + \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) + \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) + (m^{2} + 1)}{2} = 2\end{aligned}[/tex].

[tex]\begin{aligned}y_2 &= \frac{-b - \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) - \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) - (m^{2} + 1)}{2} \\ &= \frac{-2\, m^{2} + 2}{2} = -m^{2} + 1\end{aligned}[/tex].

Since [tex]y = \sin(x)[/tex], it is necessary that [tex]-1 \le y \le 1[/tex] for the original solution to have a real root when solved for [tex]x[/tex].

The first solution, [tex]y_1[/tex], does not meet the requirements. On the other hand, simplifying [tex]-1 \le y_2 \le 1[/tex], [tex]-1 \le -m^{2} + 1 \le 1[/tex] gives:

[tex]-2 \le -m^{2} \le 0[/tex].

[tex]0 \le m^{2} \le 2[/tex].

[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].

In other words,  solving [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] for [tex]y[/tex] would give a real root between [tex]-1 \le y \le 1[/tex] if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].

On the other hand, given that [tex]y = \sin(x)[/tex] for the [tex]x[/tex] in the original equation, solving that equation for [tex]x\![/tex] would give a real root if and only if [tex]-1 \le y \le 1[/tex].

Therefore, the original equation with [tex]x[/tex] as the unknown has a real root if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].

Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.