Discover the best answers to your questions with the help of IDNLearn.com. Ask anything and receive thorough, reliable answers from our community of experienced professionals.

Prove that A.M, G.M. and H.M between any two unequal positive numbers satisfy the following relations.
i. (G.M)²= (A.M)×(H.M)
ii.A.M>G.M>H.M​


Sagot :

Answer:

See below

Step-by-step explanation:

we want to prove that A.M, G.M. and H.M between any two unequal positive numbers satisfy the following relations.

  1. (G.M)²= (A.M)×(H.M)
  2. A.M>G.M>H.M

well, to do so let the two unequal positive numbers be [tex]\text{$x_1$ and $x_2$}[/tex] where:

  • [tex] x_{1} > x_{2}[/tex]

the AM,GM and HM of [tex]x_1[/tex] and[tex] x_2[/tex] is given by the following table:

[tex]\begin{array}{ |c |c|c | } \hline AM& GM& HM\\ \hline \dfrac{x_{1} + x_{2}}{2} & \sqrt{x_{1} x_{2}} & \dfrac{2}{ \frac{1}{x_{1} } + \frac{1}{x_{2}} } \\ \hline\end{array}[/tex]

Proof of I:

[tex] \displaystyle \rm AM \times HM = \frac{x_{1} + x_{2}}{2} \times \frac{2}{ \frac{1}{x_{1} } + \frac{1}{x_{2}} } [/tex]

simplify addition:

[tex] \displaystyle \frac{x_{1} + x_{2}}{2} \times \frac{2}{ \dfrac{x_{1} + x_{2}}{x_{1} x_{2}} } [/tex]

reduce fraction:

[tex] \displaystyle x_{1} + x_{2} \times \frac{1}{ \dfrac{x_{1} + x_{2}}{x_{1} x_{2}} } [/tex]

simplify complex fraction:

[tex] \displaystyle x_{1} + x_{2} \times \frac{x_{1} x_{2}}{x_{1} + x_{2}} [/tex]

reduce fraction:

[tex] \displaystyle x_{1} x_{2}[/tex]

rewrite:

[tex] \displaystyle (\sqrt{x_{1} x_{2}} {)}^{2} [/tex]

[tex] \displaystyle AM \times HM = (GM{)}^{2} [/tex]

hence, PROVEN

Proof of II:

[tex] \displaystyle x_{1} > x_{2}[/tex]

square root both sides:

[tex] \displaystyle \sqrt{x_{1} }> \sqrt{ x_{2}}[/tex]

isolate right hand side expression to left hand side and change its sign:

[tex]\displaystyle\sqrt{x_{1} } - \sqrt{ x_{2}} > 0[/tex]

square both sides:

[tex]\displaystyle(\sqrt{x_{1} } - \sqrt{ x_{2}} {)}^{2} > 0[/tex]

expand using (a-b)²=a²-2ab+b²:

[tex]\displaystyle x_{1} -2\sqrt{x_{1} }\sqrt{ x_{2}} + x_{2} > 0[/tex]

move -2√x_1√x_2 to right hand side and change its sign:

[tex]\displaystyle x_{1} + x_{2} > 2 \sqrt{x_{1} } \sqrt{ x_{2}}[/tex]

divide both sides by 2:

[tex]\displaystyle \frac{x_{1} + x_{2}}{2} > \sqrt{x_{1} x_{2}}[/tex]

[tex]\displaystyle \boxed{ AM>GM}[/tex]

again,

[tex]\displaystyle \bigg( \frac{1}{\sqrt{x_{1} }} - \frac{1}{\sqrt{ x_{2}}} { \bigg)}^{2} > 0[/tex]

expand:

[tex]\displaystyle \frac{1}{x_{1}} - \frac{2}{\sqrt{x_{1} x_{2}} } + \frac{1}{x_{2} }> 0[/tex]

move the middle expression to right hand side and change its sign:

[tex]\displaystyle \frac{1}{x_{1}} + \frac{1}{x_{2} }> \frac{2}{\sqrt{x_{1} x_{2}} }[/tex]

[tex]\displaystyle \frac{\frac{1}{x_{1}} + \frac{1}{x_{2} }}{2}> \frac{1}{\sqrt{x_{1} x_{2}} }[/tex]

[tex]\displaystyle \rm \frac{1}{ HM} > \frac{1}{GM} [/tex]

cross multiplication:

[tex]\displaystyle \rm \boxed{ GM >HM}[/tex]

hence,

[tex]\displaystyle \rm A.M>G.M>H.M[/tex]

PROVEN