Get the best answers to your questions with the help of IDNLearn.com's experts. Our Q&A platform offers reliable and thorough answers to help you make informed decisions quickly and easily.
Sagot :
Answer:
[tex] \rm \displaystyle y' = 2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} [/tex]
Step-by-step explanation:
we would like to figure out the differential coefficient of [tex]e^{2x}(1+\ln(x))[/tex]
remember that,
the differential coefficient of a function y is what is now called its derivative y', therefore let,
[tex] \displaystyle y = {e}^{2x} \cdot (1 + \ln(x) )[/tex]
to do so distribute:
[tex] \displaystyle y = {e}^{2x} + \ln(x) \cdot {e}^{2x} [/tex]
take derivative in both sides which yields:
[tex] \displaystyle y' = \frac{d}{dx} ( {e}^{2x} + \ln(x) \cdot {e}^{2x} )[/tex]
by sum derivation rule we acquire:
[tex] \rm \displaystyle y' = \frac{d}{dx} {e}^{2x} + \frac{d}{dx} \ln(x) \cdot {e}^{2x} [/tex]
Part-A: differentiating $e^{2x}$
[tex] \displaystyle \frac{d}{dx} {e}^{2x} [/tex]
the rule of composite function derivation is given by:
[tex] \rm\displaystyle \frac{d}{dx} f(g(x)) = \frac{d}{dg} f(g(x)) \times \frac{d}{dx} g(x)[/tex]
so let g(x) [2x] be u and transform it:
[tex] \displaystyle \frac{d}{du} {e}^{u} \cdot \frac{d}{dx} 2x[/tex]
differentiate:
[tex] \displaystyle {e}^{u} \cdot 2[/tex]
substitute back:
[tex] \displaystyle \boxed{2{e}^{2x} }[/tex]
Part-B: differentiating ln(x)•e^2x
Product rule of differentiating is given by:
[tex] \displaystyle \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)[/tex]
let
- [tex]f(x) \implies \ln(x) [/tex]
- [tex]g(x) \implies {e}^{2x} [/tex]
substitute
[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \frac{d}{dx}( \ln(x) ) {e}^{2x} + \ln(x) \frac{d}{dx} {e}^{2x} [/tex]
differentiate:
[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \boxed{\frac{1}{x} {e}^{2x} + 2\ln(x) {e}^{2x} }[/tex]
Final part:
substitute what we got:
[tex] \rm \displaystyle y' = \boxed{2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} }[/tex]
and we're done!
Answer:
Product Rule for Differentiation
[tex]\textsf{If }y=uv[/tex]
[tex]\dfrac{dy}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}[/tex]
Given equation:
[tex]y=e^{2x}(1+\ln x)[/tex]
Define the variables:
[tex]\textsf{Let }u=e^{2x} \implies \dfrac{du}{dx}=2e^{2x}[/tex]
[tex]\textsf{Let }v=1+\ln x \implies \dfrac{dv}{dx}=\dfrac{1}{x}[/tex]
Therefore:
[tex]\begin{aligned}\dfrac{dy}{dx} & =u\dfrac{dv}{dx}+v\dfrac{du}{dx}\\\\\implies \dfrac{dy}{dx} & =e^{2x} \cdot \dfrac{1}{x}+(1+\ln x) \cdot 2e^{2x}\\\\& = \dfrac{e^{2x}}{x}+2e^{2x}(1+\ln x)\\\\ & = \dfrac{e^{2x}}{x}+2e^{2x}+2e^{2x} \ln x\\\\& = e^{2x}\left(\dfrac{1}{x}+2+2 \ln x \right)\end{aligned}[/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.