Get detailed and reliable answers to your questions on IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
Step-by-step explanation:
[tex]\large\underline{\sf{Solution-}}[/tex]
Given expression is
[tex]\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } [/tex]
To, evaluate this limit, let we simplify numerator and denominator individually.
So, Consider Numerator
[tex]\rm :\longmapsto\:n + {n}^{2} + {n}^{3} + - - - + {n}^{n} [/tex]
Clearly, if forms a Geometric progression with first term n and common ratio n respectively.
So, using Sum of n terms of GP, we get
[tex]\rm \: = \: \dfrac{n( {n}^{n} - 1)}{n - 1} [/tex]
[tex]\rm \: = \: \dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} } [/tex]
Now, Consider Denominator, we have
[tex]\rm :\longmapsto\: {1}^{n} + {2}^{n} + {3}^{n} + - - - + {n}^{n} [/tex]
can be rewritten as
[tex]\rm :\longmapsto\: {1}^{n} + {2}^{n} + {3}^{n} + - - - + {(n - 1)}^{n} + {n}^{n} [/tex]
[tex]\rm \: = \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg][/tex]
[tex]\rm \: = \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg][/tex]
Now, Consider
[tex]\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } [/tex]
So, on substituting the values evaluated above, we get
[tex]\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]
[tex]\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]
[tex]\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]
[tex]\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]
[tex]\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]
Now, we know that,
[tex]\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}} [/tex]
So, using this, we get
[tex]\rm \: = \: \dfrac{1}{1 + {e}^{ - 1} + {e}^{ - 2} + - - - - \infty } [/tex]
Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have
[tex]\rm \: = \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } } [/tex]
[tex]\rm \: = \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } } [/tex]
[tex]\rm \: = \: \dfrac{1}{\dfrac{e}{e - 1} } [/tex]
[tex]\rm \: = \: \dfrac{e - 1}{e} [/tex]
[tex]\rm \: = \: 1 - \dfrac{1}{e} [/tex]
Hence,
[tex]\boxed{\tt{ \displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } = \frac{e - 1}{e} = 1 - \frac{1}{e}}}[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.