Get detailed and reliable answers to your questions on IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.

lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​

Lim Nn N N Nⁿ1ⁿ 2ⁿ 3ⁿ Nⁿ class=

Sagot :

Step-by-step explanation:

[tex]\large\underline{\sf{Solution-}}[/tex]

Given expression is

[tex]\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } [/tex]

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

[tex]\rm :\longmapsto\:n + {n}^{2} + {n}^{3} + - - - + {n}^{n} [/tex]

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

[tex]\rm \:  =  \: \dfrac{n( {n}^{n} - 1)}{n - 1} [/tex]

[tex]\rm \:  =  \: \dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} } [/tex]

Now, Consider Denominator, we have

[tex]\rm :\longmapsto\: {1}^{n} + {2}^{n} + {3}^{n} + - - - + {n}^{n} [/tex]

can be rewritten as

[tex]\rm :\longmapsto\: {1}^{n} + {2}^{n} + {3}^{n} + - - - + {(n - 1)}^{n} + {n}^{n} [/tex]

[tex]\rm \:  =  \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg][/tex]

[tex]\rm \:  =  \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg][/tex]

Now, Consider

[tex]\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } [/tex]

So, on substituting the values evaluated above, we get

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

Now, we know that,

[tex]\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}} [/tex]

So, using this, we get

[tex]\rm \:  =  \: \dfrac{1}{1 + {e}^{ - 1} + {e}^{ - 2} + - - - - \infty } [/tex]

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

[tex]\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } } [/tex]

[tex]\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } } [/tex]

[tex]\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} } [/tex]

[tex]\rm \:  =  \: \dfrac{e - 1}{e} [/tex]

[tex]\rm \:  =  \: 1 - \dfrac{1}{e} [/tex]

Hence,

[tex]\boxed{\tt{ \displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } = \frac{e - 1}{e} = 1 - \frac{1}{e}}}[/tex]