Get the most out of your questions with IDNLearn.com's extensive resources. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Answer:
See below
Step-by-step explanation:
Considering [tex]$\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$[/tex], then
[tex]\Vert \vec{u} \cdot \vec{v}\Vert \leq \Vert\vec{u}\Vert \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$[/tex]
This is the Cauchy–Schwarz Inequality, therefore
[tex]$\left(\sum_{i=1}^{n} u_i v_i \right)^2 \leq \left(\sum_{i=1}^{n} u_i \right)^2 \left(\sum_{i=1}^{n} v_i \right)^2 $[/tex]
We have the equation
[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} = \dfrac{1}{a+b}, a,b\in\mathbb{N}[/tex]
We can use the Cauchy–Schwarz Inequality because [tex]a[/tex] and [tex]b[/tex] are greater than 0. In fact, [tex]a>0 \wedge b>0 \implies ab>0[/tex]. Using the Cauchy–Schwarz Inequality, we have
[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} =\dfrac{(\sin^2 x)^2}{a}+\dfrac{(\cos^2 x)}{b}\geq \dfrac{(\sin^2 x+\cos^2 x)^2}{a+b} = \dfrac{1}{a+b}[/tex]
and the equation holds for
[tex]\dfrac{\sin^2{x}}{a}=\dfrac{\cos^2{x}}{b}=\dfrac{1}{a+b}[/tex]
[tex]\implies\quad \sin^2 x = \dfrac{a}{a+b} \text{ and }\cos^2 x = \dfrac{b}{a+b}[/tex]
Therefore, once we can write
[tex]\sin^2 x = \dfrac{a}{a+b} \implies \sin^{4n}x = \dfrac{a^{2n}}{(a+b)^{2n}} \implies\dfrac{\sin^{4n}x }{a^{2n-1}} = \dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}[/tex]
It is the same thing for cosine, thus
[tex]\cos^2 x = \dfrac{b}{a+b} \implies \dfrac{\cos^{4n}x }{b^{2n-1}} = \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}}[/tex]
Once
[tex]\dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}+ \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}} =\dfrac{a^{2n}}{(a+b)^{2n} \cdot \dfrac{a^{2n}}{a} } + \dfrac{b^{2n}}{(a+b)^{2n}\cdot \dfrac{b^{2n}}{b} }[/tex]
[tex]=\dfrac{1}{(a+b)^{2n} \cdot \dfrac{1}{a} } + \dfrac{1}{(a+b)^{2n}\cdot \dfrac{1}{b} } = \dfrac{a}{(a+b)^{2n} } + \dfrac{b}{(a+b)^{2n} } = \dfrac{a+b}{(a+b)^{2n} }[/tex]
dividing both numerator and denominator by [tex](a+b)[/tex], we get
[tex]\dfrac{a+b}{(a+b)^{2n} } = \dfrac{1}{(a+b)^{2n-1} }[/tex]
Therefore, it is proved that
[tex]\dfrac{\sin ^{4n} x }{a^{2n-1}} + \dfrac{\cos^{4n} x }{b^{2n-1}} = \dfrac{1}{(a+b)^{2n-1}}, a,b\in\mathbb{N}[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.