For all your questions, big or small, IDNLearn.com has the answers you need. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.

[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Question ~}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]

Prove that ~

[tex] \dfrac{d}{dx}\sec(x) = \sec(x) \tan(x) [/tex]


by using first principle of differentiation ~​


Sagot :

Answer:

METHOD I:

(by using the first principle of differentiation)

We have the "Limit definition of Derivatives":

[tex]\boxed{\mathsf{f'(x)= \lim_{h \to 0} \{\frac{f(x+h)-f(x)}{h} \} ....(i)}}[/tex]

Here, f(x) = sec x, f(x+h) = sec (x+h)

  • Substituting these in eqn. (i)

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \{\frac{sec(x+h)-sec(x)}{h} \} }[/tex]

  • sec x can be written as 1/ cos(x)

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{1}{cos(x+h)} -\frac{1}{cos(x)} \} }[/tex]

  • Taking LCM

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{cos(x)-cos(x+h)}{cos(x)cos(x+h)} \} }[/tex]

  • By Cosines sum to product formula, i.e.,

[tex]\boxed{\mathsf{cos\:A-cos\:B=-2sin(\frac{A+B}{2} )sin(\frac{A-B}{2} )}}[/tex]

=> cos(x) - cos(x+h) = -2sin{(x+x+h)/2}sin{(x-x-h)/2}

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{2sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{sin(\frac{h}{2} )}{h} }[/tex]

  • I shifted a 2 from the first limit to the second limit, since the limits ar ein multiplication this transmission doesn't affect the result

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{2sin(\frac{h}{2} )}{h} }[/tex]

  • 2/ h can also be written as 1/(h/ 2)

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{1\times sin(\frac{h}{2} )}{\frac{h}{2} } }[/tex]

  • We have limₓ→₀ (sin x) / x = 1.

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: 1 }[/tex]

  • h→0 means h/ 2→0

Substituting 0 for h and h/ 2

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+0)}{cos(x+0)cos(x)} }[/tex]

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)cos(x)} }[/tex]

[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)}\times \frac{1}{cos x} }[/tex]

  • sin x/ cos x is tan x whereas 1/ cos (x) is sec (x)

[tex]\implies \mathsf{f'(x)= tan(x)\times sec(x) }[/tex]

Hence, we got

[tex]\underline{\mathsf{\overline{\frac{d}{dx} (sec(x))=sec(x)tan(x)}}}[/tex]

-  - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

METHOD II:

(by using other standard derivatives)

[tex] \boxed{ \mathsf{ \frac{d}{dx} ( \sec \: x) = \sec x \tan x }}[/tex]

  • sec x can also  be written as (cos x)⁻¹

We have a standard derivative for variables in x raised to an exponent:

[tex] \boxed{ \mathsf{ \frac{d}{dx}(x)^{n} = n(x)^{n - 1} }}[/tex]

Therefore,

[tex] \mathsf{ \frac{d}{dx}( \cos x)^{ - 1} = - 1( \cos \: x) ^{( - 1 - 1} } \\ \implies \mathsf{\ - 1( \cos \: x) ^{- 2 }}[/tex]

  • Any base with negative exponent is equal to its reciprocal with same positive exponent

[tex] \implies \: \mathsf{ - \frac{1}{ (\cos x) {}^{2} } }[/tex]

The process of differentiating doesn't just end here. It follows chain mechanism, I.e.,

while calculating the derivative of a function that itself contains a function, the derivatives of all the inner functions are multiplied to that of the exterior to get to the final result.

  • The inner function that remains is cos x whose derivative is -sin x.

[tex] \implies \mathsf{ - \frac{1}{ (\cos x )^{2} } \times ( - \sin x) }[/tex]

  • cos²x can also be written as (cos x).(cos x)

[tex] \implies \mathsf{ \frac{ \sin x }{ \cos x } \times ( \frac{1}{cos x} ) }[/tex]

  • sin x/ cos x is tan x, while 1/ cos x is sec x

[tex] \implies \mathsf{ \tan x \times \sec x }[/tex]

= sec x. tan x

Hence, Proved!

We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.