IDNLearn.com: Your destination for reliable and timely answers to any question. Find the solutions you need quickly and accurately with help from our knowledgeable community.

Find the indefinite integral using the substitution x = 3 sin(θ). (Use C for the constant of integration.) 1 (9 − x2)3/2 dx

Sagot :

It looks like the integral might be

[tex]\displaystyle \int (9 - x^2)^{3/2} \, dx[/tex]

or perhaps

[tex]\displaystyle \int \frac1{(9 - x^2)^{3/2}} \, dx[/tex]

Take note of the fact that both integrands are defined only over the interval -3 < x < 3.

For either integral, we substitute x = 3 sin(θ) and dx = 3 cos(θ) dθ.

Note that we want this substitution to be reversible, so we must restrict -π/2 ≤ θ ≤ π/2, an interval over which sine has an inverse. Then θ = arcsin(x/3).

The first case then reduces to

[tex]\displaystyle \int (9 - (3\sin(\theta))^2)^{3/2} (3 \cos(\theta) \, d\theta) = 3 \times 9^{3/2} \int (1 - \sin^2(\theta))^{3/2} \cos(\theta) \, d\theta \\\\ = 81 \int (\cos^2(\theta))^{3/2} \cos(\theta) \, d\theta \\\\ = 81 \int |\cos^3(\theta)| \cos(\theta) \, d\theta[/tex]

By definition of absolute value,

[tex]\displaystyle 81 \int |\cos^3(\theta)| \cos(\theta) \, d\theta = \begin{cases}\displaystyle 81 \int \cos^4(\theta) \, d\theta & \text{if }\cos(\theta) \ge 0 \\ \displaystyle -81 \int \cos^4(\theta) \, d\theta & \text{if }\cos(\theta) < 0\end{cases}[/tex]

and these cases correspond to 0 ≤ θ < π/2 and π/2 < θ ≤ π, respectively. But we are assuming -π/2 ≤ θ ≤ π/2, so the negative case doesn't matter to us.

You can compute the remaining antiderivative by exploiting the half-angle identity for cosine,

[tex]\cos^2(\theta) = \dfrac{1 + \cos(2\theta)}2[/tex]

Then

[tex]\cos^4(\theta) = \left(\cos^2(\theta)\right)^2 = \dfrac{1 + 2\cos(2\theta) + \cos^2(2\theta)}4 = \dfrac{3 + 4\cos(2\theta) + \cos(4\theta)}8[/tex]

and so

[tex]\displaystyle \int \cos^4(\theta) \, d\theta = \dfrac{12\theta + 8\sin(2\theta) + \sin(4\theta)}{32} + C[/tex]

We can simplify this using the double angle identity for (co)sine,

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = 1 - 2 sin²(θ)

as well as the relations,

sin(arcsin(x/3)) = x/3

cos(arcsin(x/3)) = √(9 - x²)/3

which gives us

[tex]\displaystyle \int \cos^4(\theta) \, d\theta = \dfrac{12\theta + 16 \sin(\theta) \cos(\theta) + 4 \sin(\theta) \cos(\theta) (1 - 2\sin^2(\theta))}{32} + C[/tex]

Putting this in terms of x, we get

[tex]\displaystyle \int (9 - x^2)^{3/2} \, dx \\ = 81 \times \dfrac{12\arcsin\left(\frac x3\right) + 16 \times \frac x3 \times \frac{\sqrt{9-x^2}}3 + 4\times\frac x3\times\frac{\sqrt{9-x^2}}3 \left(1 - 2\left(\frac x3\right)^2\right)}{32} + C[/tex]

[tex]\displaystyle \int (9 - x^2)^{3/2} \, dx = 81 \times \dfrac{12\arcsin\left(\frac x3\right) + \frac{16x\sqrt{9-x^2}}9 + \frac{4x(9-2x^2)\sqrt{9-x^2}}{81}}{32} + C[/tex]

[tex]\boxed{\displaystyle \int (9 - x^2)^{3/2} \, dx = \dfrac{12\arcsin\left(\frac x3\right) + (180x-8x^3)\sqrt{9-x^2}}{32} + C}[/tex]

If you were asking about the other integral, the first few steps are similar and you end up with the far more trivial integral and antiderivative

[tex]\displaystyle \frac19 \int \frac{d\theta}{\cos^2(\theta)} = \frac19 \int \sec^2(\theta) \, d\theta = \frac19 \tan(\theta) + C[/tex]

Putting it back in terms of x, we get

[tex]\displaystyle \int \frac1{(9 - x^2)^{3/2}} \, dx = \frac19 \tan\left(\arcsin\left(\frac x3\right)\right) + C[/tex]

Recall that tan(θ) = sin(θ)/cos(θ), so

[tex]\displaystyle \int \frac1{(9 - x^2)^{3/2}} \, dx = \frac19 \times \frac{\frac x3}{\frac{\sqrt{9-x^2}}3} + C[/tex]

[tex]\boxed{\displaystyle \int \frac1{(9 - x^2)^{3/2}} \, dx = \frac{x}{9\sqrt{9-x^2}} + C}[/tex]