From health tips to tech hacks, find it all on IDNLearn.com. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
Multiply the numerator and denominator by 1 - sin(x) :
[tex]\dfrac{1}{1 + \sin(x)} \times \dfrac{1 - \sin(x)}{1 - \sin(x)} = \dfrac{1 - \sin(x)}{1 - \sin^2(x)} = \dfrac{1-\sin(x)}{\cos^2(x)}[/tex]
Now separate the terms in the fraction and rewrite them as
[tex]\dfrac1{\cos^2(x)} - \dfrac{\sin(x)}{\cos^2(x)} = \sec^2(x) - \tan(x) \sec(x)[/tex]
and you'll recognize some known derivatives,
[tex]\dfrac{d}{dx} \tan(x) = \sec^2(x)[/tex]
[tex]\dfrac{d}{dx} \sec(x) = \sec(x) \tan(x)[/tex]
So, we have
[tex]\displaystyle \int \frac{dx}{1 + \sin(x)} = \int (\sec^2(x) - \sec(x) \tan(x)) \, dx = \boxed{\tan(x) - \sec(x) + C}[/tex]
which we can put back in terms of sin and cos as
[tex]\tan(x) - \sec(x) = \dfrac{\sin(x)}{\cos(x)}-\dfrac1{\cos(x)} = \dfrac{\sin(x)-1}{\cos(x)}[/tex]
We are given with a Indefinite integral , and we need to find it's value ,so , let's start
[tex]{:\implies \quad \displaystyle \sf \int \dfrac{1}{1+\sin (x)}dx}[/tex]
Now , Rationalizing the denominator i.e multiplying the numerator and denominator by the conjugate of denominator i.e 1 - sin(x)
[tex]{:\implies \quad \displaystyle \sf \int \bigg\{\dfrac{1}{1+\sin (x)}\times \dfrac{1-\sin (x)}{1-\sin (x)}\bigg\}dx}[/tex]
[tex]{:\implies \quad \displaystyle \sf \int \dfrac{1-\sin (x)}{1-\sin^{2}(x)}dx\quad \qquad \{\because (a-b)(a+b)=a^{2}-b^{2}\}}[/tex]
[tex]{:\implies \quad \displaystyle \sf \int \dfrac{1-\sin (x)}{\cos^{2}(x)}dx\quad \qquad \{\because \sin^{2}(x)+\cos^{2}(x)=1\}}[/tex]
[tex]{:\implies \quad \displaystyle \sf \int \bigg\{\dfrac{1}{\cos^{2}(x)}-\dfrac{\sin (x)}{\cos^{2}(x)}\bigg\}dx}[/tex]
[tex]{:\implies \quad \displaystyle \sf \int \bigg\{\sec^{2}(x)-\dfrac{\sin (x)}{\cos (x)}\times \dfrac{1}{\cos (x)}\bigg\}dx\quad \qquad \bigg\{\because \dfrac{1}{\cos (\theta)}=\sec (\theta)\bigg\}}[/tex]
[tex]{:\implies \quad \displaystyle \sf \int \{\sec^{2}(x)-\tan (x)\sec (x)\}\quad \qquad \bigg\{\because \dfrac{\sin (\theta)}{\cos (\theta)}=\tan (\theta)\bigg\}}[/tex]
Now , we know that ;
- [tex]{\boxed{\displaystyle \bf \int \{f(x)\pm g(x)\}dx=\int f(x)\: dx \pm \int g(x)\: dx}}[/tex]
Using this we have ;
[tex]{:\implies \quad \displaystyle \sf \int \sec^{2}(x)dx-\int \tan (x)\sec (x)dx}[/tex]
Now , we also knows that ;
- [tex]{\boxed{\displaystyle \bf \int \sec^{2}(x)=\tan (x)+C}}[/tex]
- [tex]{\boxed{\displaystyle \bf \int \tan (x)\sec (x)dx=\sec (x)+C}}[/tex]
Where C is the Arbitrary Constant . Using this
[tex]{:\implies \quad \displaystyle \sf \tan (x)-\sec (x)+C}[/tex]
[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{\displaystyle \bf \int \dfrac{1}{1+\sin (x)}dx=\tan (x)-\sec (x)+C \:\: \forall \:\: C\in \mathbb{R}}}}[/tex]
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.