IDNLearn.com is committed to providing high-quality answers to your questions. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
Rewrite the sums as
[tex]\displaystyle S_2 = \sum_{k=1}^n \frac{k^2}{2k^2 - 2nk + n^2} = \sum_{k=1}^n \frac{\frac{k^2}{n^2}}{\frac{2k^2}{n^2} - \frac{2k}n + 1}[/tex]
and
[tex]\displaystyle S_3 = \sum_{k=1}^n \frac{k^2}{3k^2 - 3nk + n^2} = \sum_{k=1}^n \frac{\frac{k^2}{n^2}}{\frac{3k^2}{n^2} - \frac{3k}n + 1}[/tex]
Now notice that
[tex]\displaystyle \lim_{n\to\infty} \frac{S_2}n = \int_0^1 \frac{x^2}{2x^2 - 2x + 1} = \frac12[/tex]
and
[tex]\displaystyle \lim_{n\to\infty} \frac{S_3}n = \int_0^1 \frac{x^2}{3x^2 - 3x + 1} = \frac{9 + 2\pi\sqrt3}{27}[/tex]
and the important point here is that [tex]\frac{S_2}n[/tex] and [tex]\frac{S_3}n[/tex] converge to constants. For any real constant a, we have
[tex]\displaystyle \lim_{n\to\infty} \frac{\ln(an)}n = 0[/tex]
Rewrite the limit as
[tex]\displaystyle \lim_{n\to\infty} \sqrt[n]{S_2 \times S_3} = \lim_{n\to\infty} \exp\left(\ln\left(\sqrt[n]{S_2 \times S_3}\right)\right) \\\\ = \exp\left(\lim_{n\to\infty} \frac{\ln(S_2) + \ln(S_3)}n\right) \\\\ = \exp\left(\lim_{n\to\infty} \frac{\ln\left(n \times \frac{S_2}n\right) + \ln\left(n \times \frac{S_3}n\right)}n\right)[/tex]
Then
[tex]\displaystyle \lim_{n\to\infty} \sqrt[n]{S_2 \times S_3} = e^0 = \boxed{1}[/tex]
A plot of the limand for n = first 1000 positive integers suggests the limit is correct, but convergence is slow.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.