Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
Rewrite the sums as
[tex]\displaystyle S_2 = \sum_{k=1}^n \frac{k^2}{2k^2 - 2nk + n^2} = \sum_{k=1}^n \frac{\frac{k^2}{n^2}}{\frac{2k^2}{n^2} - \frac{2k}n + 1}[/tex]
and
[tex]\displaystyle S_3 = \sum_{k=1}^n \frac{k^2}{3k^2 - 3nk + n^2} = \sum_{k=1}^n \frac{\frac{k^2}{n^2}}{\frac{3k^2}{n^2} - \frac{3k}n + 1}[/tex]
Now notice that
[tex]\displaystyle \lim_{n\to\infty} \frac{S_2}n = \int_0^1 \frac{x^2}{2x^2 - 2x + 1} = \frac12[/tex]
and
[tex]\displaystyle \lim_{n\to\infty} \frac{S_3}n = \int_0^1 \frac{x^2}{3x^2 - 3x + 1} = \frac{9 + 2\pi\sqrt3}{27}[/tex]
and the important point here is that [tex]\frac{S_2}n[/tex] and [tex]\frac{S_3}n[/tex] converge to constants. For any real constant a, we have
[tex]\displaystyle \lim_{n\to\infty} \frac{\ln(an)}n = 0[/tex]
Rewrite the limit as
[tex]\displaystyle \lim_{n\to\infty} \sqrt[n]{S_2 \times S_3} = \lim_{n\to\infty} \exp\left(\ln\left(\sqrt[n]{S_2 \times S_3}\right)\right) \\\\ = \exp\left(\lim_{n\to\infty} \frac{\ln(S_2) + \ln(S_3)}n\right) \\\\ = \exp\left(\lim_{n\to\infty} \frac{\ln\left(n \times \frac{S_2}n\right) + \ln\left(n \times \frac{S_3}n\right)}n\right)[/tex]
Then
[tex]\displaystyle \lim_{n\to\infty} \sqrt[n]{S_2 \times S_3} = e^0 = \boxed{1}[/tex]
A plot of the limand for n = first 1000 positive integers suggests the limit is correct, but convergence is slow.

We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.