Get insightful responses to your questions quickly and easily on IDNLearn.com. Get prompt and accurate answers to your questions from our community of knowledgeable experts.

Prove all the relation of quadric polynomial.

Kindly need help!!! ​


Sagot :

[tex]{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}[/tex]

Let [tex]\alpha[/tex] and [tex]\beta[/tex] be the two zeroes of P(x) = [tex]\sf {a}^{2} + bx + c[/tex]

• A polynomial is always equal to it's factors, also the constant "k" is not equal to zero

[tex] \tt \sf {a}^{2} + bx + c = k(x - \alpha )(x - \beta )[/tex]

• Using distributive property

[tex]\tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} - \beta x - \alpha x + \alpha \beta \bigg)[/tex]

[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -k (\beta x )- k(\alpha x )+k( \alpha \beta )[/tex]

Taking common

[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -kx (\beta + \alpha)+k( \alpha \beta ) - - (1)[/tex]

Equating coefficients of like terms

[tex] \sf \: a = k - - (2)[/tex]

[tex] \sf b = - k( \alpha + \beta ) - - (3)[/tex]

[tex] \sf c = k \alpha \beta - - (4)[/tex]

★ From 3

[tex] \sf b = - k( \alpha + \beta ) - - (3)[/tex]

★ From 2 we have a = k so we have -

[tex] \sf b = - a( \alpha + \beta ) [/tex]

[tex]\sf - \dfrac{b}{a} = ( \alpha + \beta ) [/tex]

[tex]\sf \therefore \boxed {{ \red{( \alpha + \beta ) = - \dfrac{b}{a} } }}[/tex]

Sum of zeros = [tex]- \dfrac{b}{a}[/tex]

★ From 4

[tex] \sf c = k \alpha \beta - - (4)[/tex]

★ From 2 we have a = k so we have -

[tex] \sf c = a \: \alpha \: \beta[/tex]

[tex]\sf \dfrac{c}{a} = \alpha \beta[/tex]

[tex]\sf \therefore \boxed {{ \red{( \alpha \beta ) = \dfrac{c}{a} } }}[/tex]

Product of zeros = [tex] \dfrac{c}{a}[/tex]

Also,

★ From 1

[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -kx (\beta + \alpha)+k( \alpha \beta ) - - (1)[/tex]

[tex]\tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} -x ( \alpha + \beta ) + ( \alpha \beta \bigg) [/tex]

• Now just put S instead of sum of zeroes and P instead of product of zeroes

[tex] \tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} -x ( S ) + ( P \bigg) [/tex]

[tex]\tt \sf{a}^{2} + bx + c = \boxed{ \red{ \sf \tt k \bigg( {x}^{2} - Sx + ( P \bigg ) }}[/tex]

[tex]\rule{280pt}{2pt}[/tex]