Find the best solutions to your problems with the help of IDNLearn.com's expert users. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
Stokes' theorem relates the surface integral of the curl of [tex]\vec F[/tex] across [tex]S[/tex] to the line integral of [tex]\vec F[/tex] along the boundary of [tex]S[/tex].
The boundary of [tex]S[/tex] is a circle with radius 7 centered at the origin in the [tex]x,y[/tex]-plane. Parameterize this path by
[tex]\vec r(t) = 7\cos(t)\,\vec\imath + 7\sin(t)\,\vec\jmath[/tex]
with [tex]0\le t\le2\pi[/tex]. Observe that [tex]z=0[/tex], so [tex]\cos(z) = 1[/tex] and the [tex]\vec\jmath[/tex]-component of [tex]\vec F[/tex] contributes nothing. The double integral then reduces to
[tex]\displaystyle \iint_S (\nabla\times\vec F)\cdot d\vec S = \int_0^{2\pi} \vec F(\vec r(t)) \cdot \frac{d\vec r}{dt} \, dt \\\\ ~~~~~~~~ = \int_0^{2\pi} \left(e^{49\cos(t)\sin(t)}\,\vec\imath + 49\cos(t)\sin(t)\,\vec\jmath\right) \cdot \left(-7\sin(t)\,\vec\imath + 7\cos(t)\,\vec\jmath\right) \, dt \\\\ ~~~~~~~~ = -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]
Observe that by substituting [tex]t=u+\pi[/tex], we have
[tex]\sin(t) = \sin(u+\pi) = \sin(u)\cos(\pi) + \cos(u)\sin(\pi) = -\sin(u)[/tex]
so that the integral over [tex][\pi,2\pi][/tex] can be expressed in terms of the integral over [tex][0,\pi][/tex] as
[tex]\displaystyle \int_\pi^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = \int_0^\pi -e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]
Then the integrals over [tex][0,\pi][/tex] and [tex][\pi,2\pi][/tex] cancel each other and integral of the curl of [tex]\vec F[/tex] is
[tex]\displaystyle -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = -7 \int_0^\pi 0 \, dt = \boxed{0}[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.