Join the growing community of curious minds on IDNLearn.com and get the answers you need. Get prompt and accurate answers to your questions from our experts who are always ready to help.

Z^4-5(1+2i)z^2+24-10i=0

Find the value of z.

Can someone please help me with this one?


Sagot :

Using the quadratic formula, we solve for [tex]z^2[/tex].

[tex]z^4 - 5(1+2i) z^2 + 24 - 10i = 0 \implies z^2 = \dfrac{5+10i \pm \sqrt{-171+140i}}2[/tex]

Taking square roots on both sides, we end up with

[tex]z = \pm \sqrt{\dfrac{5+10i \pm \sqrt{-171+140i}}2}[/tex]

Compute the square roots of -171 + 140i.

[tex]|-171+140i| = \sqrt{(-171)^2 + 140^2} = 221[/tex]

[tex]\arg(-171+140i) = \pi - \tan^{-1}\left(\dfrac{140}{171}\right)[/tex]

By de Moivre's theorem,

[tex]\sqrt{-171 + 140i} = \sqrt{221} \exp\left(i \left(\dfrac\pi2 - \dfrac12 \tan^{-1}\left(\dfrac{140}{171}\right)\right)\right) \\\\ ~~~~~~~~~~~~~~~~~~~~= \sqrt{221} i \left(\dfrac{14}{\sqrt{221}} + \dfrac5{\sqrt{221}}i\right) \\\\ ~~~~~~~~~~~~~~~~~~~~= 5+14i[/tex]

and the other root is its negative, -5 - 14i. We use the fact that (140, 171, 221) is a Pythagorean triple to quickly find

[tex]t = \tan^{-1}\left(\dfrac{140}{171}\right) \implies \cos(t) = \dfrac{171}{221}[/tex]

as well as the fact that

[tex]0<\tan(t)<1 \implies 0along with the half-angle identities to find

[tex]\cos\left(\dfrac t2\right) = \sqrt{\dfrac{1+\cos(t)}2} = \dfrac{14}{\sqrt{221}}[/tex]

[tex]\sin\left(\dfrac t2\right) = \sqrt{\dfrac{1-\cos(t)}2} = \dfrac5{\sqrt{221}}[/tex]

(whose signs are positive because of the domain of [tex]\frac t2[/tex]).

This leaves us with

[tex]z = \pm \sqrt{\dfrac{5+10i \pm (5 + 14i)}2} \implies z = \pm \sqrt{5 + 12i} \text{ or } z = \pm \sqrt{-2i}[/tex]

Compute the square roots of 5 + 12i.

[tex]|5 + 12i| = \sqrt{5^2 + 12^2} = 13[/tex]

[tex]\arg(5+12i) = \tan^{-1}\left(\dfrac{12}5\right)[/tex]

By de Moivre,

[tex]\sqrt{5 + 12i} = \sqrt{13} \exp\left(i \dfrac12 \tan^{-1}\left(\dfrac{12}5\right)\right) \\\\ ~~~~~~~~~~~~~= \sqrt{13} \left(\dfrac3{\sqrt{13}} + \dfrac2{\sqrt{13}}i\right) \\\\ ~~~~~~~~~~~~~= 3+2i[/tex]

and its negative, -3 - 2i. We use similar reasoning as before:

[tex]t = \tan^{-1}\left(\dfrac{12}5\right) \implies \cos(t) = \dfrac5{13}[/tex]

[tex]1 < \tan(t) < \infty \implies \dfrac\pi4 < t < \dfrac\pi2 \implies \dfrac\pi8 < \dfrac t2 < \dfrac\pi4[/tex]

[tex]\cos\left(\dfrac t2\right) = \dfrac3{\sqrt{13}}[/tex]

[tex]\sin\left(\dfrac t2\right) = \dfrac2{\sqrt{13}}[/tex]

Lastly, compute the roots of -2i.

[tex]|-2i| = 2[/tex]

[tex]\arg(-2i) = -\dfrac\pi2[/tex]

[tex]\implies \sqrt{-2i} = \sqrt2 \, \exp\left(-i\dfrac\pi4\right) = \sqrt2 \left(\dfrac1{\sqrt2} - \dfrac1{\sqrt2}i\right) = 1 - i[/tex]

as well as -1 + i.

So our simplified solutions to the quartic are

[tex]\boxed{z = 3+2i} \text{ or } \boxed{z = -3-2i} \text{ or } \boxed{z = 1-i} \text{ or } \boxed{z = -1+i}[/tex]