Join the conversation on IDNLearn.com and get the answers you seek from experts. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.

Let a1, a2, a3, ... be a sequence of positive integers in arithmetic progression with common difference
2. Also, let b1, b2, b3, ... be a sequence of positive integers in geometric progression with common
ratio 2. If a1 = b1 = c, then the number of all possible values of c, for which the equality

2(a1 + a2 + ⋯ + an

) = b1 + b2 + ⋯ + bn

holds for some positive integer n, is _____


Sagot :

Since [tex]a_1,a_2,a_3,\cdots[/tex] are in arithmetic progression,

[tex]a_2 = a_1 + 2[/tex]

[tex]a_3 = a_2 + 2 = a_1 + 2\cdot2[/tex]

[tex]a_4 = a_3+2 = a_1+3\cdot2[/tex]

[tex]\cdots \implies a_n = a_1 + 2(n-1)[/tex]

and since [tex]b_1,b_2,b_3,\cdots[/tex] are in geometric progression,

[tex]b_2 = 2b_1[/tex]

[tex]b_3=2b_2 = 2^2 b_1[/tex]

[tex]b_4=2b_3=2^3b_1[/tex]

[tex]\cdots\implies b_n=2^{n-1}b_1[/tex]

Recall that

[tex]\displaystyle \sum_{k=1}^n 1 = \underbrace{1+1+1+\cdots+1}_{n\,\rm times} = n[/tex]

[tex]\displaystyle \sum_{k=1}^n k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}2[/tex]

It follows that

[tex]a_1 + a_2 + \cdots + a_n = \displaystyle \sum_{k=1}^n (a_1 + 2(k-1)) \\\\ ~~~~~~~~ = a_1 \sum_{k=1}^n 1 + 2 \sum_{k=1}^n (k-1) \\\\ ~~~~~~~~ = a_1 n +  n(n-1)[/tex]

so the left side is

[tex]2(a_1+a_2+\cdots+a_n) = 2c n + 2n(n-1) = 2n^2 + 2(c-1)n[/tex]

Also recall that

[tex]\displaystyle \sum_{k=1}^n ar^{k-1} = \frac{a(1-r^n)}{1-r}[/tex]

so that the right side is

[tex]b_1 + b_2 + \cdots + b_n = \displaystyle \sum_{k=1}^n 2^{k-1}b_1 = c(2^n-1)[/tex]

Solve for [tex]c[/tex].

[tex]2n^2 + 2(c-1)n = c(2^n-1) \implies c = \dfrac{2n^2 - 2n}{2^n - 2n - 1} = \dfrac{2n(n-1)}{2^n - 2n - 1}[/tex]

Now, the numerator increases more slowly than the denominator, since

[tex]\dfrac{d}{dn}(2n(n-1)) = 4n - 2[/tex]

[tex]\dfrac{d}{dn} (2^n-2n-1) = \ln(2)\cdot2^n - 2[/tex]

and for [tex]n\ge5[/tex],

[tex]2^n > \dfrac4{\ln(2)} n \implies \ln(2)\cdot2^n - 2 > 4n - 2[/tex]

This means we only need to check if the claim is true for any [tex]n\in\{1,2,3,4\}[/tex].

[tex]n=1[/tex] doesn't work, since that makes [tex]c=0[/tex].

If [tex]n=2[/tex], then

[tex]c = \dfrac{4}{2^2 - 4 - 1} = \dfrac4{-1} = -4 < 0[/tex]

If [tex]n=3[/tex], then

[tex]c = \dfrac{12}{2^3 - 6 - 1} = 12[/tex]

If [tex]n=4[/tex], then

[tex]c = \dfrac{24}{2^4 - 8 - 1} = \dfrac{24}7 \not\in\Bbb N[/tex]

There is only one value for which the claim is true, [tex]c=12[/tex].