IDNLearn.com: Your reliable source for finding expert answers. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.

Use cylindrical shells to find the volume of the solid generated when the region enclosed by the curves y=x3, x=1, and y=0 is revolved about the y-axis.

Sagot :

To calculate the total volume of the solid we will divide it into n shell cyline thickness of [tex]$\Delta y$.[/tex]

The internal shell cylinder circumference C shall be[tex]$2 \pi r_i$[/tex]

where r is the in The shell cylinder internal area A shall be C.

where h is the height

The volume of the shell cylinder[tex]$\Delta v$[/tex] shall be[tex]$A \cdot \Delta y$.[/tex]

Then we will have:

[tex]\Delta v=A \cdot \Delta y=C \cdot h \cdot \Delta y=2 \pi r_i h \cdot \Delta y \Rightarrow d v=2 \pi r_i h \cdot d y$[/tex]

The total volume of the solid shall be the summation of all n shell cylinders

[tex]\int d v=\int 2 \pi r_i h d y \Rightarrow V=\int_a^b 2 \pi r_i h d y \Rightarrow V=2 \pi \int_a^b r_i h d y$[/tex]

[tex]\int d v=\int 2 \pi r_i h d y \Rightarrow V=\int_a^b 2 \pi r_i h d y \Rightarrow V=2 \pi \int_a^b r_i h d y[/tex]

[tex]The value $a$ is the value of $y$ at the point where $x=0$ then:For $x=0 \Rightarrow y=0^3 \Rightarrow y=0$ then $a=0$.The value $b$ is the value of $y$ at the point where $x=1$ then:[/tex]

[tex]For $x=1 \Rightarrow y=1^3 \Rightarrow y=1$ then $b=1$.Since the integration will be with variable $y$ we have to express the function $y=x^3$ in terms of $y$ :$[/tex]

y=x^3 \[tex]Rightarrow x=\sqrt[3]{y}[/tex]

Substituting in V, we will have:

[tex]V= & 2 \pi \int_a^b r_i h d y=2 \pi \int_0^1(1-y)(1-\sqrt[3]{y}) d y=2 \pi[/tex]\[tex]int_0^1(1-y)\left(1-y^{\frac{1}{3}}\right) d y \\[/tex]

&[tex]1-y \\& \frac{1-y^{\frac{1}{3}}}{1-y} \\& \frac{-y^{\frac{1}{3}}+y^{\frac{1}{3}} \cdot y^{\frac{1}{1}}}{} \\[/tex]

[tex]& 1-y-y^{\frac{1}{3}}+y^{\frac{1}{3}+\frac{1}{1}}= \\& =1-y-y^{\frac{1}{3}}+y^{\frac{1+3}{3}}= \\[/tex]

[tex]& =1-y-y^{\frac{1}{3}}+y^{\frac{4}{3}}= \\& =y^{\frac{4}{3}}-y^{\frac{1}{3}}-y+1[/tex]

Substituting in V:

[tex]V=2 \pi \int_0^1\left(y^{\frac{4}{3}}-y^{\frac{1}{3}}-y+1\right) d y=2[/tex][tex]{1}{3}+1}}{\frac{1}{3}+1}-\frac{y^{1+1}}[/tex]{[tex]1+1}+y\right]_0^1=2[/tex] [tex]\pi\left[\frac{y^{\frac{4+3}{3}}}{\frac{4+3}{3}}[/tex]-[tex]\frac{y^{\frac{1+3}{3}}}{\frac{1+3}{3}}-\frac{y^2}{2}+y\right]_0^1$[/tex]

Calculating the definite integral:

By definition[tex], $\int_a^b f(x) d x=\left.F(x)\right|_a ^b=F(b)-F(a)$[/tex] then:

[tex]& V=\frac{\pi}{14}\left[\left(12 \cdot 1^{\frac{7}{3}}-21 \cdot 1^{\frac{4}{3}}-14[/tex][tex]\cdot 1^2+28 \cdot 1\right)-\left(12 \cdot 0^{\frac{7}{3}}-21 \cdot[/tex] [tex]0^{\frac{4}{3}}-14 \cdot 0^2+28 \cdot 0\right)\right] \\[/tex]

& V=[tex]\frac{\pi}{14}[(12 \cdot 1-21 \cdot 1-14 \cdot 1+28 \cdot 1)-\underbrace{(12 \cdot 0-21 \cdot 0-14 \cdot 0+28 \cdot 0)}_0][/tex]

[tex]& V=\frac{\pi}{14}(12-21-14+28)=\frac{\pi}{14}(12+28-21-14)=\frac{\pi}{14}(40-35)=\frac{5 \pi}{14} \approx \frac{5 \cdot 3,1416}{14} \approx \frac{15,708}{14} \\& V \approx 1,122[/tex]

Answer:[tex]$V \approx 1,122 u . v$. (units of volume)[/tex]

To learn more about total volume visit:

https://brainly.com/question/24852961

#SPJ4