IDNLearn.com makes it easy to find precise answers to your specific questions. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
Sure, let's tackle each part of the question step-by-step.
### Part (a): Expand [tex]\( f(z) = \ln(z) \)[/tex] Centered at [tex]\( c = 1 \)[/tex] Using Taylor Series
To expand [tex]\( f(z) = \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex] using the Taylor series, we consider the series:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (z - 1)^n \][/tex]
where [tex]\( f^{(n)} \)[/tex] denotes the n-th derivative of [tex]\( f \)[/tex] evaluated at [tex]\( z=1 \)[/tex].
- For [tex]\( n = 0 \)[/tex], [tex]\( f(1) = \ln(1) = 0 \)[/tex]
- For [tex]\( n = 1 \)[/tex], [tex]\( f'(z) = \frac{1}{z} \)[/tex] and [tex]\( f'(1) = 1 \)[/tex]
- For [tex]\( n = 2 \)[/tex], [tex]\( f''(z) = -\frac{1}{z^2} \)[/tex] and [tex]\( f''(1) = -1 \)[/tex]
- For [tex]\( n = 3 \)[/tex], [tex]\( f'''(z) = \frac{2}{z^3} \)[/tex] and [tex]\( f'''(1) = 2 \)[/tex]
- And so on...
Following this pattern, we can write the first few terms of the Taylor series expansion:
[tex]\[ \ln(z) \approx (z - 1) - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \cdots \][/tex]
The expansion up to the 9th term is:
[tex]\[ \ln(z) \approx -1 - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \frac{(z - 1)^5}{5} - \frac{(z - 1)^6}{6} + \frac{(z - 1)^7}{7} - \frac{(z - 1)^8}{8} + \frac{(z - 1)^9}{9} + z + O((z-1)^{10}) \][/tex]
The above expression provides us the Taylor series expansion of [tex]\( \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex].
### Part (b): Using Maclaurin Series for [tex]\( f(x) = \sin(x) \)[/tex]
The Maclaurin series for a function [tex]\( f(x) \)[/tex] is a special case of the Taylor series centered at [tex]\( x = 0 \)[/tex]. For [tex]\( f(x) = \sin(x) \)[/tex], the series is:
[tex]\[ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \][/tex]
The sine function is an odd function, so only odd powers of [tex]\( x \)[/tex] appear in its series expansion. Its derivatives alternate in a specific pattern due to the trigonometric properties:
- [tex]\( f(0) = \sin(0) = 0 \)[/tex]
- [tex]\( f'(0) = \cos(0) = 1 \)[/tex]
- [tex]\( f''(0) = -\sin(0) = 0 \)[/tex]
- [tex]\( f'''(0) = -\cos(0) = -1 \)[/tex]
- [tex]\( f^{(4)}(0) = \sin(0) = 0 \)[/tex]
- And so on...
Thus, the Maclaurin series for [tex]\( \sin(x) \)[/tex] is:
[tex]\[ \sin(x) \approx x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880} + O(x^{10}) \][/tex]
This expansion provides us with the Maclaurin series of [tex]\( \sin(x) \)[/tex] up to the 9th power of [tex]\( x \)[/tex].
Together, these expansions answer both parts of the question comprehensively.
### Part (a): Expand [tex]\( f(z) = \ln(z) \)[/tex] Centered at [tex]\( c = 1 \)[/tex] Using Taylor Series
To expand [tex]\( f(z) = \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex] using the Taylor series, we consider the series:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (z - 1)^n \][/tex]
where [tex]\( f^{(n)} \)[/tex] denotes the n-th derivative of [tex]\( f \)[/tex] evaluated at [tex]\( z=1 \)[/tex].
- For [tex]\( n = 0 \)[/tex], [tex]\( f(1) = \ln(1) = 0 \)[/tex]
- For [tex]\( n = 1 \)[/tex], [tex]\( f'(z) = \frac{1}{z} \)[/tex] and [tex]\( f'(1) = 1 \)[/tex]
- For [tex]\( n = 2 \)[/tex], [tex]\( f''(z) = -\frac{1}{z^2} \)[/tex] and [tex]\( f''(1) = -1 \)[/tex]
- For [tex]\( n = 3 \)[/tex], [tex]\( f'''(z) = \frac{2}{z^3} \)[/tex] and [tex]\( f'''(1) = 2 \)[/tex]
- And so on...
Following this pattern, we can write the first few terms of the Taylor series expansion:
[tex]\[ \ln(z) \approx (z - 1) - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \cdots \][/tex]
The expansion up to the 9th term is:
[tex]\[ \ln(z) \approx -1 - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \frac{(z - 1)^5}{5} - \frac{(z - 1)^6}{6} + \frac{(z - 1)^7}{7} - \frac{(z - 1)^8}{8} + \frac{(z - 1)^9}{9} + z + O((z-1)^{10}) \][/tex]
The above expression provides us the Taylor series expansion of [tex]\( \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex].
### Part (b): Using Maclaurin Series for [tex]\( f(x) = \sin(x) \)[/tex]
The Maclaurin series for a function [tex]\( f(x) \)[/tex] is a special case of the Taylor series centered at [tex]\( x = 0 \)[/tex]. For [tex]\( f(x) = \sin(x) \)[/tex], the series is:
[tex]\[ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \][/tex]
The sine function is an odd function, so only odd powers of [tex]\( x \)[/tex] appear in its series expansion. Its derivatives alternate in a specific pattern due to the trigonometric properties:
- [tex]\( f(0) = \sin(0) = 0 \)[/tex]
- [tex]\( f'(0) = \cos(0) = 1 \)[/tex]
- [tex]\( f''(0) = -\sin(0) = 0 \)[/tex]
- [tex]\( f'''(0) = -\cos(0) = -1 \)[/tex]
- [tex]\( f^{(4)}(0) = \sin(0) = 0 \)[/tex]
- And so on...
Thus, the Maclaurin series for [tex]\( \sin(x) \)[/tex] is:
[tex]\[ \sin(x) \approx x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880} + O(x^{10}) \][/tex]
This expansion provides us with the Maclaurin series of [tex]\( \sin(x) \)[/tex] up to the 9th power of [tex]\( x \)[/tex].
Together, these expansions answer both parts of the question comprehensively.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.