Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
Sure! Let's tackle this problem step by step. We need to find the least number [tex]\( x \)[/tex] that, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively.
### Step-by-Step Solution:
#### 1. Understanding the problem:
We need to find [tex]\( x \)[/tex] such that:
1. [tex]\( x \equiv 6 \pmod{8} \)[/tex]
2. [tex]\( x \equiv 10 \pmod{12} \)[/tex]
3. [tex]\( x \equiv 18 \pmod{20} \)[/tex]
4. [tex]\( x \equiv 34 \pmod{36} \)[/tex]
#### 2. Recognizing equivalents:
Note that for each congruence:
[tex]\[ x \equiv a \pmod{n} \][/tex]
can be written as:
[tex]\[ x = k \cdot n + a \][/tex]
for some integer [tex]\( k \)[/tex].
##### For the congruences, we get:
1. [tex]\( x = 8k + 6 \)[/tex]
2. [tex]\( x = 12m + 10 \)[/tex]
3. [tex]\( x = 20p + 18 \)[/tex]
4. [tex]\( x = 36q + 34 \)[/tex]
#### 3. Setting expressions equal to each other:
Since [tex]\( x \)[/tex] must satisfy all these conditions simultaneously, we'll use the Chinese Remainder Theorem or manual calculation for a system of linear congruences.
Let's solve two congruences at a time.
First, let's deal with the congruences involving 8 and 12:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
Let’s adjust the equation:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
[tex]\[ 8k \equiv 4 \pmod{12} \][/tex]
Divide both terms by 4:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
This simplifies to:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
The multiplicative inverse of 2 modulo 3 is 2 (since [tex]\( 2 \times 2 \equiv 1 \pmod{3} \)[/tex]):
[tex]\[ k \equiv 2 \times 1 \pmod{3} \][/tex]
[tex]\[ k \equiv 2 \pmod{3} \][/tex]
So [tex]\( k = 3m + 2 \)[/tex] for some integer [tex]\( m \)[/tex].
Hence:
[tex]\[ x = 8k + 6 = 8(3m + 2) + 6 = 24m + 16 + 6 = 24m + 22 \][/tex]
So:
[tex]\[ x \equiv 22 \pmod{24} \][/tex]
[tex]\[ x = 24m + 22 \][/tex]
Now let's solve with the next modulo 20 condition:
[tex]\[ 24m + 22 \equiv 18 \pmod{20} \][/tex]
[tex]\[ 24m \equiv -4 \pmod{20} \][/tex]
[tex]\[ 24m \equiv 16 \pmod{20} \][/tex]
[tex]\[ 4m \equiv 4 \pmod{5} \][/tex]
Divide both terms by 4:
[tex]\[ m \equiv 1 \pmod{5} \][/tex]
So [tex]\( m = 5p + 1 \)[/tex]:
Thus:
[tex]\[ x = 24m + 22 = 24(5p + 1) + 22 = 120p + 24 + 22 = 120p + 46 \][/tex]
So:
[tex]\[ x \equiv 46 \pmod{120} \][/tex]
[tex]\[ x = 120p + 46 \][/tex]
Finally, let’s solve with the 36 modulo condition:
[tex]\[ 120p + 46 \equiv 34 \pmod{36} \][/tex]
[tex]\[ 120p \equiv -12 \pmod{36} \][/tex]
[tex]\[ 120p \equiv 24 \pmod{36} \][/tex]
[tex]\[ 12p \equiv 2 \pmod{3} \][/tex]
Divide both terms by 12:
[tex]\[ p \equiv 1 \pmod{3} \][/tex]
[tex]\[ p = 3s + 1 \][/tex]
Thus:
[tex]\[ x = 120(3s + 1) + 46 = 360s + 120 + 46 = 360s + 166 \][/tex]
#### 4. Least Solution:
The smallest solution occurs when [tex]\( s = 0 \)[/tex]:
[tex]\[ x = 360 \cdot 0 + 166 = 166 \][/tex]
So, the least number which, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively is:
[tex]\[ \boxed{166} \][/tex]
### Step-by-Step Solution:
#### 1. Understanding the problem:
We need to find [tex]\( x \)[/tex] such that:
1. [tex]\( x \equiv 6 \pmod{8} \)[/tex]
2. [tex]\( x \equiv 10 \pmod{12} \)[/tex]
3. [tex]\( x \equiv 18 \pmod{20} \)[/tex]
4. [tex]\( x \equiv 34 \pmod{36} \)[/tex]
#### 2. Recognizing equivalents:
Note that for each congruence:
[tex]\[ x \equiv a \pmod{n} \][/tex]
can be written as:
[tex]\[ x = k \cdot n + a \][/tex]
for some integer [tex]\( k \)[/tex].
##### For the congruences, we get:
1. [tex]\( x = 8k + 6 \)[/tex]
2. [tex]\( x = 12m + 10 \)[/tex]
3. [tex]\( x = 20p + 18 \)[/tex]
4. [tex]\( x = 36q + 34 \)[/tex]
#### 3. Setting expressions equal to each other:
Since [tex]\( x \)[/tex] must satisfy all these conditions simultaneously, we'll use the Chinese Remainder Theorem or manual calculation for a system of linear congruences.
Let's solve two congruences at a time.
First, let's deal with the congruences involving 8 and 12:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
Let’s adjust the equation:
[tex]\[ 8k + 6 \equiv 10 \pmod{12} \][/tex]
[tex]\[ 8k \equiv 4 \pmod{12} \][/tex]
Divide both terms by 4:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
This simplifies to:
[tex]\[ 2k \equiv 1 \pmod{3} \][/tex]
The multiplicative inverse of 2 modulo 3 is 2 (since [tex]\( 2 \times 2 \equiv 1 \pmod{3} \)[/tex]):
[tex]\[ k \equiv 2 \times 1 \pmod{3} \][/tex]
[tex]\[ k \equiv 2 \pmod{3} \][/tex]
So [tex]\( k = 3m + 2 \)[/tex] for some integer [tex]\( m \)[/tex].
Hence:
[tex]\[ x = 8k + 6 = 8(3m + 2) + 6 = 24m + 16 + 6 = 24m + 22 \][/tex]
So:
[tex]\[ x \equiv 22 \pmod{24} \][/tex]
[tex]\[ x = 24m + 22 \][/tex]
Now let's solve with the next modulo 20 condition:
[tex]\[ 24m + 22 \equiv 18 \pmod{20} \][/tex]
[tex]\[ 24m \equiv -4 \pmod{20} \][/tex]
[tex]\[ 24m \equiv 16 \pmod{20} \][/tex]
[tex]\[ 4m \equiv 4 \pmod{5} \][/tex]
Divide both terms by 4:
[tex]\[ m \equiv 1 \pmod{5} \][/tex]
So [tex]\( m = 5p + 1 \)[/tex]:
Thus:
[tex]\[ x = 24m + 22 = 24(5p + 1) + 22 = 120p + 24 + 22 = 120p + 46 \][/tex]
So:
[tex]\[ x \equiv 46 \pmod{120} \][/tex]
[tex]\[ x = 120p + 46 \][/tex]
Finally, let’s solve with the 36 modulo condition:
[tex]\[ 120p + 46 \equiv 34 \pmod{36} \][/tex]
[tex]\[ 120p \equiv -12 \pmod{36} \][/tex]
[tex]\[ 120p \equiv 24 \pmod{36} \][/tex]
[tex]\[ 12p \equiv 2 \pmod{3} \][/tex]
Divide both terms by 12:
[tex]\[ p \equiv 1 \pmod{3} \][/tex]
[tex]\[ p = 3s + 1 \][/tex]
Thus:
[tex]\[ x = 120(3s + 1) + 46 = 360s + 120 + 46 = 360s + 166 \][/tex]
#### 4. Least Solution:
The smallest solution occurs when [tex]\( s = 0 \)[/tex]:
[tex]\[ x = 360 \cdot 0 + 166 = 166 \][/tex]
So, the least number which, when divided by 8, 12, 20, and 36, leaves remainders 6, 10, 18, and 34 respectively is:
[tex]\[ \boxed{166} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.