Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Discover prompt and accurate answers from our experts, ensuring you get the information you need quickly.

Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]

---

Which function best shows the relationship between [tex]\( n \)[/tex] and [tex]\( f(n) \)[/tex]?

[tex]\[
\begin{array}{|c|c|}
\hline
n & f(n) \\
\hline
1 & 16 \\
\hline
2 & 8 \\
\hline
3 & 4 \\
\hline
4 & 2 \\
\hline
\end{array}
\][/tex]

A. [tex]\( f(n) = 16(0.5)^{n-1} \)[/tex]


Sagot :

To determine the function that best represents the relationship between [tex]\( n \)[/tex] (the number of time intervals) and [tex]\( f(n) \)[/tex] (the amount of chlorine remaining), we need to examine the given data. The data provides the following values:

[tex]\[ \begin{tabular}{|l|l|} \hline n & f(n) \\ \hline 1 & 16 \\ \hline 2 & 8 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline \end{tabular} \][/tex]

From this data, we can infer the pattern and check if a potential function fits the given values.

The values of [tex]\( f(n) \)[/tex] decrease by a factor of 2 as [tex]\( n \)[/tex] increases by 1. This suggests that the amount of chlorine is halved each time period.

We propose a function of the form:

[tex]\[ f(n) = 16 \cdot (0.5)^{n-1} \][/tex]

Let's verify this function step-by-step with the given values of [tex]\( n \)[/tex]:

1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ f(1) = 16 \cdot (0.5)^{1-1} = 16 \cdot (0.5)^0 = 16 \cdot 1 = 16 \][/tex]
This matches the value [tex]\( f(1) = 16 \)[/tex].

2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ f(2) = 16 \cdot (0.5)^{2-1} = 16 \cdot (0.5)^1 = 16 \cdot 0.5 = 8 \][/tex]
This matches the value [tex]\( f(2) = 8 \)[/tex].

3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ f(3) = 16 \cdot (0.5)^{3-1} = 16 \cdot (0.5)^2 = 16 \cdot 0.25 = 4 \][/tex]
This matches the value [tex]\( f(3) = 4 \)[/tex].

4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ f(4) = 16 \cdot (0.5)^{4-1} = 16 \cdot (0.5)^3 = 16 \cdot 0.125 = 2 \][/tex]
This matches the value [tex]\( f(4) = 2 \)[/tex].

Since the proposed function [tex]\( f(n) = 16 \cdot (0.5)^{n-1} \)[/tex] correctly produces the given values for [tex]\( f(n) \)[/tex] at [tex]\( n = 1, 2, 3, \)[/tex] and [tex]\( 4 \)[/tex], we can confirm that this is the function that best describes the relationship.

Thus, the function that best shows the relationship between [tex]\( n \)[/tex] and [tex]\( f(n) \)[/tex] is:

[tex]\[ f(n) = 16 \cdot (0.5)^{n-1} \][/tex]