IDNLearn.com is your go-to resource for finding expert answers and community support. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To solve this problem, we need to apply Coulomb's law, which states that the force between two charged particles is given by the equation:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.
First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
Next, we need to find the force when the distance is cut in half. The new distance is:
[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]
We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]
Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]
These values match the calculated forces, thus confirming the predictions according to Coulomb's law.
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.
First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
Next, we need to find the force when the distance is cut in half. The new distance is:
[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]
We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]
Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]
These values match the calculated forces, thus confirming the predictions according to Coulomb's law.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.