Discover how IDNLearn.com can help you find the answers you need quickly and easily. Find reliable solutions to your questions quickly and easily with help from our experienced experts.

Two particles are separated by 0.38 m and have charges of [tex]\(-6.25 \times 10^{-9} C\)[/tex] and [tex]\(2.91 \times 10^{-9} C\)[/tex].

Use Coulomb's law to predict the force between the particles if the distance is cut in half. The equation for Coulomb's law is [tex]\(F_e=\frac{k q_1 q_2}{r^2}\)[/tex], and the constant [tex]\(k\)[/tex] equals [tex]\(9.00 \times 10^9 N \cdot m^2 / C^2\)[/tex].

A. [tex]\(1.13 \times 10^{-6} N\)[/tex]
B. [tex]\(-1.13 \times 10^{-6} N\)[/tex]
C. [tex]\(-4.53 \times 10^{-6} N\)[/tex]
D. [tex]\(4.53 \times 10^{-6} N\)[/tex]


Sagot :

To solve this problem, we need to apply Coulomb's law, which states that the force between two charged particles is given by the equation:

[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]

where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.

First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:

[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]

Carrying out these calculations, we get:

[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]

Next, we need to find the force when the distance is cut in half. The new distance is:

[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]

We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:

[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]

Carrying out these calculations, we get:

[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]

The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]

Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]

These values match the calculated forces, thus confirming the predictions according to Coulomb's law.