Connect with knowledgeable individuals and get your questions answered on IDNLearn.com. Ask your questions and get detailed, reliable answers from our community of knowledgeable experts.
Sagot :
To determine on which planet the space probe would have the highest speed after falling from a height of 25 meters, we will use the kinematic equation for the final velocity of a freely falling object under gravity:
[tex]\[ v = \sqrt{2gh} \][/tex]
Where:
- [tex]\( v \)[/tex] is the final velocity,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height fallen.
Given:
- Mass of the probe is [tex]\( 250 \)[/tex] kg (mass does not affect the speed in this context).
- The height fallen, [tex]\( h \)[/tex], is [tex]\( 25 \)[/tex] meters.
- The values of [tex]\( g \)[/tex] for the planets in question are provided in the table.
Now, we will calculate the final velocities on each planet considering the given height of 25 meters:
### 1. Venus
[tex]\[ g_\text{Venus} = 8.9 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Venus} = \sqrt{2 \cdot 8.9 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 21.095 \, \text{m/s} \][/tex]
### 2. Earth
[tex]\[ g_\text{Earth} = 9.8 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Earth} = \sqrt{2 \cdot 9.8 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 22.136 \, \text{m/s} \][/tex]
### 3. Uranus
[tex]\[ g_\text{Uranus} = 8.7 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Uranus} = \sqrt{2 \cdot 8.7 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 20.857 \, \text{m/s} \][/tex]
### 4. Saturn
[tex]\[ g_\text{Saturn} = 9.0 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Saturn} = \sqrt{2 \cdot 9.0 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 21.213 \, \text{m/s} \][/tex]
Comparing the final velocities:
- Venus: [tex]\( 21.095 \, \text{m/s} \)[/tex]
- Earth: [tex]\( 22.136 \, \text{m/s} \)[/tex]
- Uranus: [tex]\( 20.857 \, \text{m/s} \)[/tex]
- Saturn: [tex]\( 21.213 \, \text{m/s} \)[/tex]
The highest speed is achieved on Earth, with a final velocity of [tex]\( 22.136 \, \text{m/s} \)[/tex].
Therefore, the planet on which the space probe would have the highest speed after falling 25 meters is:
C. Earth.
[tex]\[ v = \sqrt{2gh} \][/tex]
Where:
- [tex]\( v \)[/tex] is the final velocity,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height fallen.
Given:
- Mass of the probe is [tex]\( 250 \)[/tex] kg (mass does not affect the speed in this context).
- The height fallen, [tex]\( h \)[/tex], is [tex]\( 25 \)[/tex] meters.
- The values of [tex]\( g \)[/tex] for the planets in question are provided in the table.
Now, we will calculate the final velocities on each planet considering the given height of 25 meters:
### 1. Venus
[tex]\[ g_\text{Venus} = 8.9 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Venus} = \sqrt{2 \cdot 8.9 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 21.095 \, \text{m/s} \][/tex]
### 2. Earth
[tex]\[ g_\text{Earth} = 9.8 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Earth} = \sqrt{2 \cdot 9.8 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 22.136 \, \text{m/s} \][/tex]
### 3. Uranus
[tex]\[ g_\text{Uranus} = 8.7 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Uranus} = \sqrt{2 \cdot 8.7 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 20.857 \, \text{m/s} \][/tex]
### 4. Saturn
[tex]\[ g_\text{Saturn} = 9.0 \, \text{m/s}^2 \][/tex]
[tex]\[ v_\text{Saturn} = \sqrt{2 \cdot 9.0 \, \text{m/s}^2 \cdot 25 \, \text{m}} = 21.213 \, \text{m/s} \][/tex]
Comparing the final velocities:
- Venus: [tex]\( 21.095 \, \text{m/s} \)[/tex]
- Earth: [tex]\( 22.136 \, \text{m/s} \)[/tex]
- Uranus: [tex]\( 20.857 \, \text{m/s} \)[/tex]
- Saturn: [tex]\( 21.213 \, \text{m/s} \)[/tex]
The highest speed is achieved on Earth, with a final velocity of [tex]\( 22.136 \, \text{m/s} \)[/tex].
Therefore, the planet on which the space probe would have the highest speed after falling 25 meters is:
C. Earth.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.