Get comprehensive answers to your questions with the help of IDNLearn.com's community. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.
Sagot :
To determine which function represents [tex]\( g(x) \)[/tex] given that it has a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex], let’s analyze each of the provided functions step-by-step.
### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.
### Step 2: Analyzing Each Transformation
#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].
#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.
### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:
[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.
### Step 2: Analyzing Each Transformation
#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].
#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.
### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:
[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.