IDNLearn.com makes it easy to find accurate answers to your specific questions. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.
Sagot :
Sure, let's work through the steps for each part of the problem.
### Part A: Determine all zeroes of [tex]\( f(x) \)[/tex].
The function [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex].
To find the zeroes of [tex]\( f(x) \)[/tex], we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{2}(x+1)(x-3)(x^2-5) = 0. \][/tex]
This gives us:
[tex]\[ (x+1) = 0, \quad (x-3) = 0, \quad (x^2-5) = 0. \][/tex]
Solving these equations, we get:
- [tex]\( x+1 = 0 \Rightarrow x = -1. \)[/tex]
- [tex]\( x-3 = 0 \Rightarrow x = 3. \)[/tex]
- [tex]\( x^2-5 = 0 \Rightarrow x^2 = 5 \Rightarrow x = \pm \sqrt{5}. \)[/tex]
So, the zeroes of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -1, \quad x = 3, \quad x = \sqrt{5}, \quad x = -\sqrt{5}. \][/tex]
### Part B: Determine all intervals over which [tex]\( f(x) \)[/tex] is decreasing.
To find where the function is decreasing, we need to determine the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.
First, compute the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5). \][/tex]
Apply the product rule and the chain rule:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(x^2-5)' + (x+1)(x-3)(x^2-5)' \right]. \][/tex]
Simplify the derivative:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) \right]. \][/tex]
Let's solve for the critical points where [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) = 0. \][/tex]
Denote these critical points as the solutions of this equation.
After finding the critical points (let's denote them as [tex]\( a, b, c, \)[/tex] etc.), determine the sign of [tex]\( f'(x) \)[/tex] in each interval divided by these points.
To decide the intervals where [tex]\( f(x) \)[/tex] is decreasing, inspect the sign of [tex]\( f'(x) \)[/tex] in each sub-interval. If [tex]\( f'(x) < 0 \)[/tex] within an interval, [tex]\( f(x) \)[/tex] is decreasing in that interval.
### Part C: Identify all intervals for which [tex]\( g(x) > f(x) \)[/tex].
Considering [tex]\( g(x) = -e^{\cos(x)} \)[/tex].
To compare [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], we need to evaluate both functions over the interval [tex]\([-2,4]\)[/tex]:
- Numerically sample values of [tex]\( x \)[/tex] within [tex]\([-2,4]\)[/tex].
- Compute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at those sampled points.
[tex]\( g(x) \)[/tex] is a known smooth function, [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex] is a polynomial, and this comparison can be performed numerically or graphically over the interval by plotting and checking.
Identify all intervals where [tex]\( g(x) \)[/tex] is greater than [tex]\( f(x) \)[/tex]:
Evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], then determine:
[tex]\[ g(x) > f(x). \][/tex]
Compare the functions numerically to establish specific intervals.
To summarize, the steps for each part are:
A. Solve for [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex] to get the zeroes [tex]\(-1, 3, \pm \sqrt{5}.\)[/tex]
B. Find the derivative [tex]\( f'(x) \)[/tex], determine the critical points, and compute the intervals where [tex]\( f'(x) < 0 \)[/tex].
C. Numerically evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex] over [tex]\([-2, 4]\)[/tex], compare the values to identify intervals where [tex]\( g(x) > f(x) \)[/tex].
### Part A: Determine all zeroes of [tex]\( f(x) \)[/tex].
The function [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex].
To find the zeroes of [tex]\( f(x) \)[/tex], we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{2}(x+1)(x-3)(x^2-5) = 0. \][/tex]
This gives us:
[tex]\[ (x+1) = 0, \quad (x-3) = 0, \quad (x^2-5) = 0. \][/tex]
Solving these equations, we get:
- [tex]\( x+1 = 0 \Rightarrow x = -1. \)[/tex]
- [tex]\( x-3 = 0 \Rightarrow x = 3. \)[/tex]
- [tex]\( x^2-5 = 0 \Rightarrow x^2 = 5 \Rightarrow x = \pm \sqrt{5}. \)[/tex]
So, the zeroes of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -1, \quad x = 3, \quad x = \sqrt{5}, \quad x = -\sqrt{5}. \][/tex]
### Part B: Determine all intervals over which [tex]\( f(x) \)[/tex] is decreasing.
To find where the function is decreasing, we need to determine the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.
First, compute the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5). \][/tex]
Apply the product rule and the chain rule:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(x^2-5)' + (x+1)(x-3)(x^2-5)' \right]. \][/tex]
Simplify the derivative:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) \right]. \][/tex]
Let's solve for the critical points where [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) = 0. \][/tex]
Denote these critical points as the solutions of this equation.
After finding the critical points (let's denote them as [tex]\( a, b, c, \)[/tex] etc.), determine the sign of [tex]\( f'(x) \)[/tex] in each interval divided by these points.
To decide the intervals where [tex]\( f(x) \)[/tex] is decreasing, inspect the sign of [tex]\( f'(x) \)[/tex] in each sub-interval. If [tex]\( f'(x) < 0 \)[/tex] within an interval, [tex]\( f(x) \)[/tex] is decreasing in that interval.
### Part C: Identify all intervals for which [tex]\( g(x) > f(x) \)[/tex].
Considering [tex]\( g(x) = -e^{\cos(x)} \)[/tex].
To compare [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], we need to evaluate both functions over the interval [tex]\([-2,4]\)[/tex]:
- Numerically sample values of [tex]\( x \)[/tex] within [tex]\([-2,4]\)[/tex].
- Compute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at those sampled points.
[tex]\( g(x) \)[/tex] is a known smooth function, [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex] is a polynomial, and this comparison can be performed numerically or graphically over the interval by plotting and checking.
Identify all intervals where [tex]\( g(x) \)[/tex] is greater than [tex]\( f(x) \)[/tex]:
Evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], then determine:
[tex]\[ g(x) > f(x). \][/tex]
Compare the functions numerically to establish specific intervals.
To summarize, the steps for each part are:
A. Solve for [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex] to get the zeroes [tex]\(-1, 3, \pm \sqrt{5}.\)[/tex]
B. Find the derivative [tex]\( f'(x) \)[/tex], determine the critical points, and compute the intervals where [tex]\( f'(x) < 0 \)[/tex].
C. Numerically evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex] over [tex]\([-2, 4]\)[/tex], compare the values to identify intervals where [tex]\( g(x) > f(x) \)[/tex].
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.