IDNLearn.com: Your go-to resource for finding expert answers. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.
Sagot :
To find the partial pressure of gas [tex]\( Y \)[/tex], we can use Dalton's Law of Partial Pressures. This law states that the partial pressure of each gas in a mixture is proportional to its mole fraction in the mixture. The formula is given as follows:
[tex]\[ \frac{P_a}{P_T} = \frac{n_a}{n_T} \][/tex]
Where:
- [tex]\( P_a \)[/tex] is the partial pressure of gas [tex]\( a \)[/tex]
- [tex]\( P_T \)[/tex] is the total pressure
- [tex]\( n_a \)[/tex] is the number of moles of gas [tex]\( a \)[/tex]
- [tex]\( n_T \)[/tex] is the total number of moles of gases
Given:
- [tex]\( n_X = 2.0 \)[/tex] moles (gas [tex]\( X \)[/tex])
- [tex]\( n_Y = 6.0 \)[/tex] moles (gas [tex]\( Y \)[/tex])
- [tex]\( P_T = 2.1 \)[/tex] atm (total pressure)
First, let's compute the total number of moles [tex]\( n_T \)[/tex]:
[tex]\[ n_T = n_X + n_Y = 2.0 + 6.0 = 8.0 \][/tex]
Next, we use the mole fraction of gas [tex]\( Y \)[/tex] to determine its partial pressure:
[tex]\[ \frac{P_Y}{P_T} = \frac{n_Y}{n_T} \][/tex]
Solving for [tex]\( P_Y \)[/tex]:
[tex]\[ P_Y = \left(\frac{n_Y}{n_T}\right) \cdot P_T \][/tex]
Substituting the given values:
[tex]\[ P_Y = \left(\frac{6.0}{8.0}\right) \cdot 2.1 \][/tex]
[tex]\[ P_Y = 0.75 \cdot 2.1 \][/tex]
[tex]\[ P_Y = 1.575 \, \text{atm} \][/tex]
Thus, the partial pressure of gas [tex]\( Y \)[/tex] is approximately [tex]\( 1.575 \, \text{atm} \)[/tex].
From the given choices, [tex]\( 1.575 \, \text{atm} \)[/tex] is closest to [tex]\( 1.6 \, \text{atm} \)[/tex].
Therefore, the answer is:
[tex]\[ 1.6 \, \text{atm} \][/tex]
[tex]\[ \frac{P_a}{P_T} = \frac{n_a}{n_T} \][/tex]
Where:
- [tex]\( P_a \)[/tex] is the partial pressure of gas [tex]\( a \)[/tex]
- [tex]\( P_T \)[/tex] is the total pressure
- [tex]\( n_a \)[/tex] is the number of moles of gas [tex]\( a \)[/tex]
- [tex]\( n_T \)[/tex] is the total number of moles of gases
Given:
- [tex]\( n_X = 2.0 \)[/tex] moles (gas [tex]\( X \)[/tex])
- [tex]\( n_Y = 6.0 \)[/tex] moles (gas [tex]\( Y \)[/tex])
- [tex]\( P_T = 2.1 \)[/tex] atm (total pressure)
First, let's compute the total number of moles [tex]\( n_T \)[/tex]:
[tex]\[ n_T = n_X + n_Y = 2.0 + 6.0 = 8.0 \][/tex]
Next, we use the mole fraction of gas [tex]\( Y \)[/tex] to determine its partial pressure:
[tex]\[ \frac{P_Y}{P_T} = \frac{n_Y}{n_T} \][/tex]
Solving for [tex]\( P_Y \)[/tex]:
[tex]\[ P_Y = \left(\frac{n_Y}{n_T}\right) \cdot P_T \][/tex]
Substituting the given values:
[tex]\[ P_Y = \left(\frac{6.0}{8.0}\right) \cdot 2.1 \][/tex]
[tex]\[ P_Y = 0.75 \cdot 2.1 \][/tex]
[tex]\[ P_Y = 1.575 \, \text{atm} \][/tex]
Thus, the partial pressure of gas [tex]\( Y \)[/tex] is approximately [tex]\( 1.575 \, \text{atm} \)[/tex].
From the given choices, [tex]\( 1.575 \, \text{atm} \)[/tex] is closest to [tex]\( 1.6 \, \text{atm} \)[/tex].
Therefore, the answer is:
[tex]\[ 1.6 \, \text{atm} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.