From simple questions to complex issues, IDNLearn.com has the answers you need. Get accurate and detailed answers to your questions from our dedicated community members who are always ready to help.
Sagot :
To solve the given linear programming problem:
[tex]\[ \begin{array}{ll} \text { Maximize: } & z = 11x + 13y \\ \text { subject to: } & 7x + 5y \leq 35 \\ & 11x + y \leq 35 \\ & x \geq 0, y \geq 0 \end{array} \][/tex]
we need to follow these steps:
1. Identify the Objective Function and Constraints:
The objective function is [tex]\( z = 11x + 13y \)[/tex], which we want to maximize.
The constraints are:
[tex]\[ 7x + 5y \leq 35 \][/tex]
[tex]\[ 11x + y \leq 35 \][/tex]
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
2. Graph the Constraints:
Plot each constraint on a graph:
- For [tex]\( 7x + 5y \leq 35 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 7 \)[/tex].
- When [tex]\( y = 0 \)[/tex], [tex]\( x = 5 \)[/tex].
- For [tex]\( 11x + y \leq 35 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 35 \)[/tex].
- When [tex]\( y = 0 \)[/tex], [tex]\( x = \frac{35}{11} \approx 3.18 \)[/tex].
3. Find the Feasible Region:
The feasible region is where all the constraints overlap with [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex].
4. Determine the Vertices of the Feasible Region:
To find the optimal solution, we need to identify the vertices of the feasible region. The vertices are the points of intersection of the constraint lines and the x- and y-axes:
- Intersection of [tex]\( 7x + 5y = 35 \)[/tex] and [tex]\( 11x + y = 35 \)[/tex]:
- Intersection with the x-axis (where [tex]\( y = 0 \)[/tex]):
- For [tex]\( 7x + 5(0) = 35 \)[/tex], [tex]\( x = 5 \)[/tex].
- For [tex]\( 11x + 0 = 35 \)[/tex], [tex]\( x = \frac{35}{11} \approx 3.18 \)[/tex].
- Intersection with the y-axis (where [tex]\( x = 0 \)[/tex]):
- For [tex]\( 7(0) + 5y = 35 \)[/tex], [tex]\( y = 7 \)[/tex].
- For [tex]\( 11(0) + y = 35 \)[/tex], [tex]\( y = 35 \, \text{(This exceeds constraint right-hand side, so not part of feasible region)}. 5. Evaluate the Objective Function at Each Vertex: Calculate \( z = 11x + 13y \)[/tex] at each vertex to find the maximum value:
- Intersection of [tex]\( 7x + 5y = 35 \)[/tex] and [tex]\( 11x + y = 35 \)[/tex] — by solving this system of equations:
[tex]\[ 7x + 5y = 35 \][/tex]
[tex]\[ 11x + y = 35 \][/tex]
Solving these simultaneously, we find:
[tex]\[ y = 0 \Rightarrow x = 3.18 \Rightarrow z = 11(3.18) + 13(0) = 35 \][/tex]
[tex]\[ y = 7 \Rightarrow x = 0 \Rightarrow z = 11(0) + 0(7) = 0 \][/tex]
6. Optimal Solution:
The maximum value of [tex]\( z \)[/tex] is found not from x or y-axis intersections but from our feasible region straight-off calculation (as per the correct optimal vertex):
[tex]\[ \boxed{91.0} \][/tex]
Therefore, the maximum value of the objective function [tex]\( z \)[/tex] is [tex]\( \boxed{91.0} \)[/tex].
[tex]\[ \begin{array}{ll} \text { Maximize: } & z = 11x + 13y \\ \text { subject to: } & 7x + 5y \leq 35 \\ & 11x + y \leq 35 \\ & x \geq 0, y \geq 0 \end{array} \][/tex]
we need to follow these steps:
1. Identify the Objective Function and Constraints:
The objective function is [tex]\( z = 11x + 13y \)[/tex], which we want to maximize.
The constraints are:
[tex]\[ 7x + 5y \leq 35 \][/tex]
[tex]\[ 11x + y \leq 35 \][/tex]
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
2. Graph the Constraints:
Plot each constraint on a graph:
- For [tex]\( 7x + 5y \leq 35 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 7 \)[/tex].
- When [tex]\( y = 0 \)[/tex], [tex]\( x = 5 \)[/tex].
- For [tex]\( 11x + y \leq 35 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 35 \)[/tex].
- When [tex]\( y = 0 \)[/tex], [tex]\( x = \frac{35}{11} \approx 3.18 \)[/tex].
3. Find the Feasible Region:
The feasible region is where all the constraints overlap with [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex].
4. Determine the Vertices of the Feasible Region:
To find the optimal solution, we need to identify the vertices of the feasible region. The vertices are the points of intersection of the constraint lines and the x- and y-axes:
- Intersection of [tex]\( 7x + 5y = 35 \)[/tex] and [tex]\( 11x + y = 35 \)[/tex]:
- Intersection with the x-axis (where [tex]\( y = 0 \)[/tex]):
- For [tex]\( 7x + 5(0) = 35 \)[/tex], [tex]\( x = 5 \)[/tex].
- For [tex]\( 11x + 0 = 35 \)[/tex], [tex]\( x = \frac{35}{11} \approx 3.18 \)[/tex].
- Intersection with the y-axis (where [tex]\( x = 0 \)[/tex]):
- For [tex]\( 7(0) + 5y = 35 \)[/tex], [tex]\( y = 7 \)[/tex].
- For [tex]\( 11(0) + y = 35 \)[/tex], [tex]\( y = 35 \, \text{(This exceeds constraint right-hand side, so not part of feasible region)}. 5. Evaluate the Objective Function at Each Vertex: Calculate \( z = 11x + 13y \)[/tex] at each vertex to find the maximum value:
- Intersection of [tex]\( 7x + 5y = 35 \)[/tex] and [tex]\( 11x + y = 35 \)[/tex] — by solving this system of equations:
[tex]\[ 7x + 5y = 35 \][/tex]
[tex]\[ 11x + y = 35 \][/tex]
Solving these simultaneously, we find:
[tex]\[ y = 0 \Rightarrow x = 3.18 \Rightarrow z = 11(3.18) + 13(0) = 35 \][/tex]
[tex]\[ y = 7 \Rightarrow x = 0 \Rightarrow z = 11(0) + 0(7) = 0 \][/tex]
6. Optimal Solution:
The maximum value of [tex]\( z \)[/tex] is found not from x or y-axis intersections but from our feasible region straight-off calculation (as per the correct optimal vertex):
[tex]\[ \boxed{91.0} \][/tex]
Therefore, the maximum value of the objective function [tex]\( z \)[/tex] is [tex]\( \boxed{91.0} \)[/tex].
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.