Join the growing community of curious minds on IDNLearn.com. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.

Use the Gauss-Jordan method to solve the system of equations:

[tex]\[
\begin{array}{l}
y = -4 + x \\
y = -5 + z \\
z = 3 - x
\end{array}
\][/tex]

Select the correct choice below and fill in any answer boxes within your choice.

A. There is one solution. The solution is [tex]\(\square, \square, \square\)[/tex] (in the order [tex]\(x, y, z\)[/tex]).

B. There are infinitely many solutions. The solution is [tex]\((\square, \square, z)\)[/tex], where [tex]\(z\)[/tex] is any real number.

C. There is no solution.


Sagot :

To solve the system of equations using the Gauss-Jordan method, we first write the system as an augmented matrix:

[tex]\[ \begin{array}{l} y = -4 + x \\ y = -5 + z \\ z = 3 - x \end{array} \][/tex]

This can be rewritten in a more standard format:

[tex]\[ \begin{array}{l} x - y = 4 \\ y - z = -5 \\ x + z = 3 \end{array} \][/tex]

We convert this to an augmented matrix:

[tex]\[ \begin{pmatrix} 1 & -1 & 0 & \vert & 4 \\ 0 & 1 & -1 & \vert & -5 \\ 1 & 0 & 1 & \vert & 3 \end{pmatrix} \][/tex]

We will now use row operations to convert this to row-echelon form and eventually reduced row-echelon form.

1. Subtract Row 1 from Row 3:

[tex]\[ R3 = R3 - R1 \][/tex]

[tex]\[ \begin{pmatrix} 1 & -1 & 0 & \vert & 4 \\ 0 & 1 & -1 & \vert & -5 \\ 0 & 1 & 1 & \vert & -1 \end{pmatrix} \][/tex]

2. Subtract Row 2 from Row 3:

[tex]\[ R3 = R3 - R2 \][/tex]

[tex]\[ \begin{pmatrix} 1 & -1 & 0 & \vert & 4 \\ 0 & 1 & -1 & \vert & -5 \\ 0 & 0 & 2 & \vert & 4 \end{pmatrix} \][/tex]

3. Divide Row 3 by 2:

[tex]\[ R3 = \frac{R3}{2} \][/tex]

[tex]\[ \begin{pmatrix} 1 & -1 & 0 & \vert & 4 \\ 0 & 1 & -1 & \vert & -5 \\ 0 & 0 & 1 & \vert & 2 \end{pmatrix} \][/tex]

4. Eliminate the z-term from Row 2 by adding Row 3 multiplied by 1:

[tex]\[ R2 = R2 + R3 \][/tex]

[tex]\[ \begin{pmatrix} 1 & -1 & 0 & \vert & 4 \\ 0 & 1 & 0 & \vert & -3 \\ 0 & 0 & 1 & \vert & 2 \end{pmatrix} \][/tex]

5. Finally, eliminate the y-term from Row 1 by adding Row 2:

[tex]\[ R1 = R1 + R2 \][/tex]

[tex]\[ \begin{pmatrix} 1 & 0 & 0 & \vert & 1 \\ 0 & 1 & 0 & \vert & -3 \\ 0 & 0 & 1 & \vert & 2 \end{pmatrix} \][/tex]

The resulting augmented matrix represents the system:
[tex]\[ \begin{cases} x = 1 \\ y = -3 \\ z = 2 \end{cases} \][/tex]

Thus, the solution to the system is:

[tex]\[ \boxed{1, -3, 2} \][/tex]

Therefore, the correct choice is:

A. There is one solution. The solution is [tex]\( (1, -3, 2) \)[/tex].

In the order [tex]\( x, y, z \)[/tex].