IDNLearn.com provides a collaborative environment for finding and sharing knowledge. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.
Sagot :
To calculate the density of the planet in kilograms per cubic meter ([tex]\(kg/m^3\)[/tex]), we will follow these steps:
1. Convert the radius from kilometers to meters.
2. Convert the mass from grams to kilograms.
3. Compute the volume of the sphere using the formula for the volume of a sphere.
4. Use the mass and volume to find the density.
5. Express the density in standard form with three significant figures.
### Step 1: Convert the radius from kilometers to meters
The radius of the planet is [tex]\( 6371 \)[/tex] km. To convert this to meters, we multiply by [tex]\( 1000 \)[/tex]:
[tex]\[ 6371 \text{ km} = 6371 \times 1000 \, \text{m} = 6371000 \, \text{m} \][/tex]
### Step 2: Convert the mass from grams to kilograms
The mass of the planet is [tex]\( 5.97 \times 10^{27} \)[/tex] grams. To convert this to kilograms, we multiply by [tex]\( 0.001 \)[/tex] (since [tex]\( 1 \)[/tex] gram [tex]\( = 0.001 \)[/tex] kilograms):
[tex]\[ 5.97 \times 10^{27} \, \text{g} = 5.97 \times 10^{27} \times 0.001 \, \text{kg} = 5.97 \times 10^{24} \, \text{kg} \][/tex]
### Step 3: Calculate the volume of the sphere
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute the radius in meters ([tex]\( 6371000 \)[/tex] m):
[tex]\[ V = \frac{4}{3} \pi (6371000)^3 \, \text{m}^3 \][/tex]
Using the provided result, the volume [tex]\( V \)[/tex] is:
[tex]\[ V = 1.0832069168457536 \times 10^{21} \, \text{m}^3 \][/tex]
### Step 4: Calculate the density
Density [tex]\( \rho \)[/tex] is calculated as:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Using the mass [tex]\( 5.97 \times 10^{24} \, \text{kg} \)[/tex] and the volume [tex]\( 1.0832069168457536 \times 10^{21} \, \text{m}^3 \)[/tex]:
[tex]\[ \rho = \frac{5.97 \times 10^{24}}{1.0832069168457536 \times 10^{21}} \, \text{kg/m}^3 \][/tex]
Using the provided result, the density [tex]\( \rho \)[/tex] is:
[tex]\[ \rho = 5511.412369286149 \, \text{kg/m}^3 \][/tex]
### Step 5: Express the density in standard form
To express the density in standard form with three significant figures:
[tex]\[ \rho = 5.511 \times 10^3 \, \text{kg/m}^3 \][/tex]
So, the density of the planet is:
[tex]\[ \boxed{5.511 \times 10^3 \, \text{kg/m}^3} \][/tex]
1. Convert the radius from kilometers to meters.
2. Convert the mass from grams to kilograms.
3. Compute the volume of the sphere using the formula for the volume of a sphere.
4. Use the mass and volume to find the density.
5. Express the density in standard form with three significant figures.
### Step 1: Convert the radius from kilometers to meters
The radius of the planet is [tex]\( 6371 \)[/tex] km. To convert this to meters, we multiply by [tex]\( 1000 \)[/tex]:
[tex]\[ 6371 \text{ km} = 6371 \times 1000 \, \text{m} = 6371000 \, \text{m} \][/tex]
### Step 2: Convert the mass from grams to kilograms
The mass of the planet is [tex]\( 5.97 \times 10^{27} \)[/tex] grams. To convert this to kilograms, we multiply by [tex]\( 0.001 \)[/tex] (since [tex]\( 1 \)[/tex] gram [tex]\( = 0.001 \)[/tex] kilograms):
[tex]\[ 5.97 \times 10^{27} \, \text{g} = 5.97 \times 10^{27} \times 0.001 \, \text{kg} = 5.97 \times 10^{24} \, \text{kg} \][/tex]
### Step 3: Calculate the volume of the sphere
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute the radius in meters ([tex]\( 6371000 \)[/tex] m):
[tex]\[ V = \frac{4}{3} \pi (6371000)^3 \, \text{m}^3 \][/tex]
Using the provided result, the volume [tex]\( V \)[/tex] is:
[tex]\[ V = 1.0832069168457536 \times 10^{21} \, \text{m}^3 \][/tex]
### Step 4: Calculate the density
Density [tex]\( \rho \)[/tex] is calculated as:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Using the mass [tex]\( 5.97 \times 10^{24} \, \text{kg} \)[/tex] and the volume [tex]\( 1.0832069168457536 \times 10^{21} \, \text{m}^3 \)[/tex]:
[tex]\[ \rho = \frac{5.97 \times 10^{24}}{1.0832069168457536 \times 10^{21}} \, \text{kg/m}^3 \][/tex]
Using the provided result, the density [tex]\( \rho \)[/tex] is:
[tex]\[ \rho = 5511.412369286149 \, \text{kg/m}^3 \][/tex]
### Step 5: Express the density in standard form
To express the density in standard form with three significant figures:
[tex]\[ \rho = 5.511 \times 10^3 \, \text{kg/m}^3 \][/tex]
So, the density of the planet is:
[tex]\[ \boxed{5.511 \times 10^3 \, \text{kg/m}^3} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.