Find the best solutions to your problems with the help of IDNLearn.com. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.
Sagot :
To find the inverse of the matrix [tex]\( A \)[/tex], we need to follow a few key steps. The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 \\ 11 & 2 \end{pmatrix} \][/tex]
First, we calculate the determinant of [tex]\( A \)[/tex]. For a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the determinant is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
Plugging in the values from matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (6 \times 2) - (1 \times 11) = 12 - 11 = 1 \][/tex]
Since the determinant is 1, which is non-zero, the matrix [tex]\( A \)[/tex] is invertible.
Next, for a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse [tex]\( A^{-1} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\( A \)[/tex] should be:
[tex]\[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
However, the numerical values may contain minor discrepancies due to floating-point arithmetic precision inherent in calculations. Specifically, the result we found is:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thus, the inverse of the matrix [tex]\( A \)[/tex] is precisely:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
[tex]\[ A = \begin{pmatrix} 6 & 1 \\ 11 & 2 \end{pmatrix} \][/tex]
First, we calculate the determinant of [tex]\( A \)[/tex]. For a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the determinant is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
Plugging in the values from matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (6 \times 2) - (1 \times 11) = 12 - 11 = 1 \][/tex]
Since the determinant is 1, which is non-zero, the matrix [tex]\( A \)[/tex] is invertible.
Next, for a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse [tex]\( A^{-1} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\( A \)[/tex] should be:
[tex]\[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
However, the numerical values may contain minor discrepancies due to floating-point arithmetic precision inherent in calculations. Specifically, the result we found is:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thus, the inverse of the matrix [tex]\( A \)[/tex] is precisely:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.