IDNLearn.com offers a seamless experience for finding and sharing knowledge. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Let's go through the problem step-by-step:
### Step 1: Calculate the Residuals
The residuals are calculated by subtracting the predicted values from the given values. Here are the values provided in the table:
- For [tex]\( x = 1 \)[/tex]:
- Given: -2.7
- Predicted: -2.84
- Residual: [tex]\( -2.7 - (-2.84) = -2.7 + 2.84 = 0.14 \)[/tex] (approximately 0.13999999999999968)
- For [tex]\( x = 2 \)[/tex]:
- Given: -0.9
- Predicted: -0.81
- Residual: [tex]\( -0.9 - (-0.81) = -0.9 + 0.81 = -0.09 \)[/tex] (approximately -0.08999999999999997)
- For [tex]\( x = 3 \)[/tex]:
- Given: 1.1
- Predicted: 1.22
- Residual: [tex]\( 1.1 - 1.22 = -0.12 \)[/tex] (approximately -0.11999999999999988)
- For [tex]\( x = 4 \)[/tex]:
- Given: 3.2
- Predicted: 3.25
- Residual: [tex]\( 3.2 - 3.25 = -0.05 \)[/tex] (approximately -0.04999999999999982)
- For [tex]\( x = 5 \)[/tex]:
- Given: 5.4
- Predicted: 5.28
- Residual: [tex]\( 5.4 - 5.28 = 0.12 \)[/tex] (approximately 0.1200000000000001)
Updating the table with these residuals:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & Given & Predicted & Residual \\ \hline 1 & -2.7 & -2.84 & 0.13999999999999968 \\ \hline 2 & -0.9 & -0.81 & -0.08999999999999997 \\ \hline 3 & 1.1 & 1.22 & -0.11999999999999988 \\ \hline 4 & 3.2 & 3.25 & -0.04999999999999982 \\ \hline 5 & 5.4 & 5.28 & 0.1200000000000001 \\ \hline \end{tabular} \][/tex]
### Step 2: Plot the Residuals
Next, we plot these residuals on a graph with [tex]\( x \)[/tex] on the x-axis and the residuals on the y-axis. The points to plot are:
- (1, 0.14)
- (2, -0.09)
- (3, -0.12)
- (4, -0.05)
- (5, 0.12)
### Step 3: Analyze the Residual Plot
The important aspect of analyzing a residual plot is to determine if there is any discernible pattern:
- If the points display no obvious pattern and are scattered randomly around the x-axis, it implies that the line of best fit is appropriate.
- If there is a clear pattern, such as a curve or a systematic arrangement, it suggests that the line of best fit may not be the best model for the data.
Given our residuals:
[tex]\[ [0.13999999999999968, -0.08999999999999997, -0.11999999999999988, -0.04999999999999982, 0.1200000000000001] \][/tex]
### Conclusion
On evaluating these points, they are scattered randomly around the x-axis without showing a specific pattern.
Thus, for the given problem, the correct choice is:
Yes, the points have no pattern.
This indicates that the line of best fit is appropriate for the data provided.
### Step 1: Calculate the Residuals
The residuals are calculated by subtracting the predicted values from the given values. Here are the values provided in the table:
- For [tex]\( x = 1 \)[/tex]:
- Given: -2.7
- Predicted: -2.84
- Residual: [tex]\( -2.7 - (-2.84) = -2.7 + 2.84 = 0.14 \)[/tex] (approximately 0.13999999999999968)
- For [tex]\( x = 2 \)[/tex]:
- Given: -0.9
- Predicted: -0.81
- Residual: [tex]\( -0.9 - (-0.81) = -0.9 + 0.81 = -0.09 \)[/tex] (approximately -0.08999999999999997)
- For [tex]\( x = 3 \)[/tex]:
- Given: 1.1
- Predicted: 1.22
- Residual: [tex]\( 1.1 - 1.22 = -0.12 \)[/tex] (approximately -0.11999999999999988)
- For [tex]\( x = 4 \)[/tex]:
- Given: 3.2
- Predicted: 3.25
- Residual: [tex]\( 3.2 - 3.25 = -0.05 \)[/tex] (approximately -0.04999999999999982)
- For [tex]\( x = 5 \)[/tex]:
- Given: 5.4
- Predicted: 5.28
- Residual: [tex]\( 5.4 - 5.28 = 0.12 \)[/tex] (approximately 0.1200000000000001)
Updating the table with these residuals:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & Given & Predicted & Residual \\ \hline 1 & -2.7 & -2.84 & 0.13999999999999968 \\ \hline 2 & -0.9 & -0.81 & -0.08999999999999997 \\ \hline 3 & 1.1 & 1.22 & -0.11999999999999988 \\ \hline 4 & 3.2 & 3.25 & -0.04999999999999982 \\ \hline 5 & 5.4 & 5.28 & 0.1200000000000001 \\ \hline \end{tabular} \][/tex]
### Step 2: Plot the Residuals
Next, we plot these residuals on a graph with [tex]\( x \)[/tex] on the x-axis and the residuals on the y-axis. The points to plot are:
- (1, 0.14)
- (2, -0.09)
- (3, -0.12)
- (4, -0.05)
- (5, 0.12)
### Step 3: Analyze the Residual Plot
The important aspect of analyzing a residual plot is to determine if there is any discernible pattern:
- If the points display no obvious pattern and are scattered randomly around the x-axis, it implies that the line of best fit is appropriate.
- If there is a clear pattern, such as a curve or a systematic arrangement, it suggests that the line of best fit may not be the best model for the data.
Given our residuals:
[tex]\[ [0.13999999999999968, -0.08999999999999997, -0.11999999999999988, -0.04999999999999982, 0.1200000000000001] \][/tex]
### Conclusion
On evaluating these points, they are scattered randomly around the x-axis without showing a specific pattern.
Thus, for the given problem, the correct choice is:
Yes, the points have no pattern.
This indicates that the line of best fit is appropriate for the data provided.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.