IDNLearn.com offers a reliable platform for finding accurate and timely answers. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To solve the problem, we need to find the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] where [tex]\(S_n\)[/tex] is given by:
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.