Get the most out of your questions with the extensive resources available on IDNLearn.com. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.
Sagot :
To solve the problem, we need to find the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] where [tex]\(S_n\)[/tex] is given by:
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.