Join the conversation on IDNLearn.com and get the answers you seek from experts. Get accurate and detailed answers to your questions from our knowledgeable and dedicated community members.
Sagot :
To calculate the enthalpy change, [tex]\( \Delta H_{\text{rxn}} \)[/tex], for the reaction:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O (l), \][/tex]
we need to combine the enthalpy changes of the given reactions. Here are the two reactions provided:
1. [tex]\( CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \)[/tex], with [tex]\( \Delta H_1 = -802 \text{ kJ} \)[/tex]
2. [tex]\( 2 H_2O(g) \rightarrow 2 H_2O(l) \)[/tex], with [tex]\( \Delta H_2 = -88 \text{ kJ} \)[/tex]
The first reaction represents the combustion of methane yielding carbon dioxide and water in the gaseous state. The second reaction represents the phase change of water from gas to liquid.
To find the overall [tex]\( \Delta H_{\text{rxn}} \)[/tex] for the formation of liquid water directly from the combustion of methane, we sum the enthalpy changes of the individual steps:
[tex]\[ \Delta H_{\text{rxn}} = \Delta H_1 + \Delta H_2 \][/tex]
Given the values:
[tex]\[ \Delta H_1 = -802 \text{ kJ} \][/tex]
[tex]\[ \Delta H_2 = -88 \text{ kJ} \][/tex]
Add these together:
[tex]\[ \Delta H_{\text{rxn}} = -802 \text{ kJ} + -88 \text{ kJ} \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = -890 \text{ kJ} \][/tex]
Thus, the equation to calculate [tex]\( \Delta H_{\text{rxn}} \)[/tex] for the reaction:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O (l) \][/tex]
is:
[tex]\[ \Delta H_{\text{rxn}} = \Delta H_1 + \Delta H_2 = -802 \text{ kJ} + -88 \text{ kJ} = -890 \text{ kJ} \][/tex]
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O (l), \][/tex]
we need to combine the enthalpy changes of the given reactions. Here are the two reactions provided:
1. [tex]\( CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \)[/tex], with [tex]\( \Delta H_1 = -802 \text{ kJ} \)[/tex]
2. [tex]\( 2 H_2O(g) \rightarrow 2 H_2O(l) \)[/tex], with [tex]\( \Delta H_2 = -88 \text{ kJ} \)[/tex]
The first reaction represents the combustion of methane yielding carbon dioxide and water in the gaseous state. The second reaction represents the phase change of water from gas to liquid.
To find the overall [tex]\( \Delta H_{\text{rxn}} \)[/tex] for the formation of liquid water directly from the combustion of methane, we sum the enthalpy changes of the individual steps:
[tex]\[ \Delta H_{\text{rxn}} = \Delta H_1 + \Delta H_2 \][/tex]
Given the values:
[tex]\[ \Delta H_1 = -802 \text{ kJ} \][/tex]
[tex]\[ \Delta H_2 = -88 \text{ kJ} \][/tex]
Add these together:
[tex]\[ \Delta H_{\text{rxn}} = -802 \text{ kJ} + -88 \text{ kJ} \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = -890 \text{ kJ} \][/tex]
Thus, the equation to calculate [tex]\( \Delta H_{\text{rxn}} \)[/tex] for the reaction:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O (l) \][/tex]
is:
[tex]\[ \Delta H_{\text{rxn}} = \Delta H_1 + \Delta H_2 = -802 \text{ kJ} + -88 \text{ kJ} = -890 \text{ kJ} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.