IDNLearn.com offers a collaborative platform for sharing and gaining knowledge. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.
Sagot :
To find the height at which Noelle's and Cesar's rocks are at the same height, we need to determine the time [tex]\( x \)[/tex] when their heights are equal, and then evaluate the height at this time.
The functions describing the heights of the rocks are:
[tex]\[ f(x) = -4.9x^2 + 17 \][/tex]
[tex]\[ g(x) = -4.9x^2 + 13x \][/tex]
We set these functions equal to each other to find the time [tex]\( x \)[/tex] when both rocks are at the same height:
[tex]\[ -4.9x^2 + 17 = -4.9x^2 + 13x \][/tex]
Subtracting [tex]\(-4.9x^2\)[/tex] from both sides, we get:
[tex]\[ 17 = 13x \][/tex]
Solving for [tex]\( x \)[/tex], we divide both sides by 13:
[tex]\[ x = \frac{17}{13} \][/tex]
Next, we substitute [tex]\( x = \frac{17}{13} \)[/tex] back into either height function to find the height. Using the function [tex]\( f(x) \)[/tex]:
[tex]\[ f\left(\frac{17}{13}\right) = -4.9\left(\frac{17}{13}\right)^2 + 17 \][/tex]
We calculate this value:
[tex]\[ \left(\frac{17}{13}\right)^2 = \frac{289}{169} \][/tex]
[tex]\[ -4.9 \times \frac{289}{169} = -4.9 \times 1.7100591716 \approx -8.3792899408284 \][/tex]
[tex]\[ f \left(\frac{17}{13}\right) = -8.3792899408284 + 17 \approx 8.6207100591716 \][/tex]
Rounding this to the nearest tenth of a meter, we get:
[tex]\[ \text{Height} \approx 8.6 \text{ meters} \][/tex]
Thus, the height at which both rocks are the same is approximately:
[tex]\[ 8.6 \text{ meters} \][/tex]
The functions describing the heights of the rocks are:
[tex]\[ f(x) = -4.9x^2 + 17 \][/tex]
[tex]\[ g(x) = -4.9x^2 + 13x \][/tex]
We set these functions equal to each other to find the time [tex]\( x \)[/tex] when both rocks are at the same height:
[tex]\[ -4.9x^2 + 17 = -4.9x^2 + 13x \][/tex]
Subtracting [tex]\(-4.9x^2\)[/tex] from both sides, we get:
[tex]\[ 17 = 13x \][/tex]
Solving for [tex]\( x \)[/tex], we divide both sides by 13:
[tex]\[ x = \frac{17}{13} \][/tex]
Next, we substitute [tex]\( x = \frac{17}{13} \)[/tex] back into either height function to find the height. Using the function [tex]\( f(x) \)[/tex]:
[tex]\[ f\left(\frac{17}{13}\right) = -4.9\left(\frac{17}{13}\right)^2 + 17 \][/tex]
We calculate this value:
[tex]\[ \left(\frac{17}{13}\right)^2 = \frac{289}{169} \][/tex]
[tex]\[ -4.9 \times \frac{289}{169} = -4.9 \times 1.7100591716 \approx -8.3792899408284 \][/tex]
[tex]\[ f \left(\frac{17}{13}\right) = -8.3792899408284 + 17 \approx 8.6207100591716 \][/tex]
Rounding this to the nearest tenth of a meter, we get:
[tex]\[ \text{Height} \approx 8.6 \text{ meters} \][/tex]
Thus, the height at which both rocks are the same is approximately:
[tex]\[ 8.6 \text{ meters} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.