IDNLearn.com: Where your questions meet expert answers and community support. Get comprehensive answers to all your questions from our network of experienced experts.
Sagot :
To find the distance between Pluto and Charon, we can use the gravitational force formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of Pluto, [tex]\( 1.3 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of Charon, [tex]\( 1.6 \times 10^{21} \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
We need to rearrange this formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{G m_1 m_2}{F}} \][/tex]
First, substitute the known values into the rearranged formula:
[tex]\[ r = \sqrt{\frac{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \times 1.3 \times 10^{22} \, \text{kg} \times 1.6 \times 10^{21} \, \text{kg}}{3.61 \times 10^{18} \, \text{N}}} \][/tex]
Simplify the expression inside the square root:
[tex]\[ r = \sqrt{\frac{6.67430 \times 1.3 \times 1.6 \times 10^{-11 + 22 + 21}}{3.61 \times 10^{18}}} \][/tex]
Combine the constants:
[tex]\[ r = \sqrt{\frac{13.877392 \times 10^{32}}{3.61 \times 10^{18}}} \][/tex]
Now, divide the exponents:
[tex]\[ r = \sqrt{3.84494155 \times 10^{14}} \][/tex]
Finally, take the square root:
[tex]\[ r \approx 19610150.574132934 \, \text{m} \][/tex]
Thus, the distance between Pluto and Charon is approximately [tex]\( 1.96 \times 10^7 \, \text{m} \)[/tex].
Looking at the provided multiple-choice answers, the closest option is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
So the correct answer is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of Pluto, [tex]\( 1.3 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of Charon, [tex]\( 1.6 \times 10^{21} \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
We need to rearrange this formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{G m_1 m_2}{F}} \][/tex]
First, substitute the known values into the rearranged formula:
[tex]\[ r = \sqrt{\frac{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \times 1.3 \times 10^{22} \, \text{kg} \times 1.6 \times 10^{21} \, \text{kg}}{3.61 \times 10^{18} \, \text{N}}} \][/tex]
Simplify the expression inside the square root:
[tex]\[ r = \sqrt{\frac{6.67430 \times 1.3 \times 1.6 \times 10^{-11 + 22 + 21}}{3.61 \times 10^{18}}} \][/tex]
Combine the constants:
[tex]\[ r = \sqrt{\frac{13.877392 \times 10^{32}}{3.61 \times 10^{18}}} \][/tex]
Now, divide the exponents:
[tex]\[ r = \sqrt{3.84494155 \times 10^{14}} \][/tex]
Finally, take the square root:
[tex]\[ r \approx 19610150.574132934 \, \text{m} \][/tex]
Thus, the distance between Pluto and Charon is approximately [tex]\( 1.96 \times 10^7 \, \text{m} \)[/tex].
Looking at the provided multiple-choice answers, the closest option is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
So the correct answer is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.