IDNLearn.com offers a comprehensive solution for all your question and answer needs. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
Let's discuss whether functions [tex]\( m(x) \)[/tex] and [tex]\( n(x) = \frac{1}{4} x^2 - 2x + 4 \)[/tex] are inverse functions.
To determine if two functions are inverses, we need to check if they satisfy the following conditions:
1. [tex]\( m(n(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( n \)[/tex].
2. [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( m \)[/tex].
### Step-by-Step Analysis:
1. Expression of [tex]\( n(x) \)[/tex]:
[tex]\[ n(x) = \frac{1}{4} x^2 - 2x + 4 \][/tex]
2. Finding the inverse candidate [tex]\( m(x) \)[/tex]:
- Assume [tex]\( n(x) = y \)[/tex]. Then we have:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- We need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
3. Solving for [tex]\( x \)[/tex]:
- Set up the equation:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- Rearrange and solve the quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{4} x^2 - 2x + (4 - y) = 0 \][/tex]
- Multiply through by 4 to clear the fraction:
[tex]\[ x^2 - 8x + 16 - 4y = 0 \][/tex]
- Rewrite the equation:
[tex]\[ x^2 - 8x + (16 - 4y) = 0 \][/tex]
- This is a standard quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where [tex]\( a = 1, b = -8, \)[/tex] and [tex]\( c = 16 - 4y \)[/tex].
4. Applying the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 4(1)(16 - 4y)}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 64 + 16y}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{16y}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{y} \][/tex]
- So, there are two possible solutions:
[tex]\[ x_1 = 4 + 2\sqrt{y} \][/tex]
[tex]\[ x_2 = 4 - 2\sqrt{y} \][/tex]
5. Verify inverse conditions:
- Substituting [tex]\( x = 4 + 2\sqrt{y} \)[/tex] or [tex]\( x = 4 - 2\sqrt{y} \)[/tex] into [tex]\( n(x) \)[/tex] to see if they satisfy [tex]\( n(m(x)) = x \)[/tex]:
- Substituting into [tex]\( n \)[/tex]:
[tex]\[ n(4 + 2\sqrt{y}) \quad \text{and} \quad n(4 - 2\sqrt{y}) \][/tex]
- Check if these yield [tex]\( y \)[/tex] when substited back.
6. Conclusion:
- After detailed checks and analysis, it turns out that neither of these candidates consistently satisfy both conditions [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
Given our analysis, we conclude that:
The functions [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are not inverse functions of each other. This is because there is no function [tex]\( m(x) \)[/tex] that satisfies both [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
To determine if two functions are inverses, we need to check if they satisfy the following conditions:
1. [tex]\( m(n(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( n \)[/tex].
2. [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( m \)[/tex].
### Step-by-Step Analysis:
1. Expression of [tex]\( n(x) \)[/tex]:
[tex]\[ n(x) = \frac{1}{4} x^2 - 2x + 4 \][/tex]
2. Finding the inverse candidate [tex]\( m(x) \)[/tex]:
- Assume [tex]\( n(x) = y \)[/tex]. Then we have:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- We need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
3. Solving for [tex]\( x \)[/tex]:
- Set up the equation:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- Rearrange and solve the quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{4} x^2 - 2x + (4 - y) = 0 \][/tex]
- Multiply through by 4 to clear the fraction:
[tex]\[ x^2 - 8x + 16 - 4y = 0 \][/tex]
- Rewrite the equation:
[tex]\[ x^2 - 8x + (16 - 4y) = 0 \][/tex]
- This is a standard quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where [tex]\( a = 1, b = -8, \)[/tex] and [tex]\( c = 16 - 4y \)[/tex].
4. Applying the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 4(1)(16 - 4y)}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 64 + 16y}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{16y}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{y} \][/tex]
- So, there are two possible solutions:
[tex]\[ x_1 = 4 + 2\sqrt{y} \][/tex]
[tex]\[ x_2 = 4 - 2\sqrt{y} \][/tex]
5. Verify inverse conditions:
- Substituting [tex]\( x = 4 + 2\sqrt{y} \)[/tex] or [tex]\( x = 4 - 2\sqrt{y} \)[/tex] into [tex]\( n(x) \)[/tex] to see if they satisfy [tex]\( n(m(x)) = x \)[/tex]:
- Substituting into [tex]\( n \)[/tex]:
[tex]\[ n(4 + 2\sqrt{y}) \quad \text{and} \quad n(4 - 2\sqrt{y}) \][/tex]
- Check if these yield [tex]\( y \)[/tex] when substited back.
6. Conclusion:
- After detailed checks and analysis, it turns out that neither of these candidates consistently satisfy both conditions [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
Given our analysis, we conclude that:
The functions [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are not inverse functions of each other. This is because there is no function [tex]\( m(x) \)[/tex] that satisfies both [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.