IDNLearn.com is your reliable source for expert answers and community insights. Our experts provide timely, comprehensive responses to ensure you have the information you need.

What are the two solutions of [tex]\( x^2 - 2x - 4 = -3x + 9 \)[/tex]?

A. The [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts of the graphs of [tex]\( y = x^2 - 2x - 4 \)[/tex] and [tex]\( y = -3x + 9 \)[/tex].

B. The [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts of the graphs of [tex]\( y = x^2 - 2x - 4 \)[/tex] and [tex]\( y = -3x + 9 \)[/tex].

C. The [tex]\( y \)[/tex]-coordinates of the intersection points of the graphs of [tex]\( y = x^2 - 2x - 4 \)[/tex] and [tex]\( y = -3x + 9 \)[/tex].

D. The [tex]\( x \)[/tex]-coordinates of the intersection points of the graphs of [tex]\( y = x^2 - 2x - 4 \)[/tex] and [tex]\( y = -3x + 9 \)[/tex].


Sagot :

Let's break down the solution to each part of the question step-by-step.

### 1. Finding the Solutions of the Equation [tex]\( x^2 - 2x - 4 = -3x + 9 \)[/tex]

To find the solutions, we first set [tex]\( x^2 - 2x - 4 \)[/tex] equal to [tex]\(-3x + 9\)[/tex].

[tex]\[ x^2 - 2x - 4 = -3x + 9 \][/tex]

Rearrange the equation to set it to zero:

[tex]\[ x^2 - 2x - 4 + 3x - 9 = 0 \][/tex]

Combine like terms:

[tex]\[ x^2 + x - 13 = 0 \][/tex]

Now, solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -13 \)[/tex]:

[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-13)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 52}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{53}}{2} \][/tex]

The solutions are:

[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]

So, the solutions are:

[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]

### 2. Finding the [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts

For [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( x = 0 \)[/tex]:

[tex]\[ y = 0^2 - 2(0) - 4 = -4 \][/tex]

For [tex]\( y = -3x + 9 \)[/tex], set [tex]\( x = 0 \)[/tex]:

[tex]\[ y = -3(0) + 9 = 9 \][/tex]

So, the [tex]\( y \)[/tex]-coordinates of the y-intercepts are:

[tex]\[ y = -4 \quad \text{and} \quad y = 9 \][/tex]

### 3. Finding the [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts

For the quadratic [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( y = 0 \)[/tex]:

[tex]\[ x^2 - 2x - 4 = 0 \][/tex]

Solve for [tex]\( x \)[/tex] using the quadratic formula:

[tex]\[ x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 + 16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{20}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 2\sqrt{5}}{2} \][/tex]
[tex]\[ x = 1 \pm \sqrt{5} \][/tex]

So, the [tex]\( x \)[/tex]-coordinates of the x-intercepts are:

[tex]\[ x = 1 + \sqrt{5} \quad \text{and} \quad x = 1 - \sqrt{5} \][/tex]

For the linear equation [tex]\( y = -3x + 9 \)[/tex], set [tex]\( y = 0 \)[/tex]:

[tex]\[ -3x + 9 = 0 \][/tex]

Solve for [tex]\( x \)[/tex]:

[tex]\[ -3x = -9 \][/tex]
[tex]\[ x = 3 \][/tex]

So, the [tex]\( x \)[/tex]-coordinate of the x-intercept is:

[tex]\[ x = 3 \][/tex]

### 4. Finding the [tex]\( y \)[/tex]-coordinates of the Intersection Points

To find the [tex]\( y \)[/tex]-coordinates of the intersection points, we already have the [tex]\( x \)[/tex]-coordinates of the intersection points from solving [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:

Substitute these [tex]\( x \)[/tex]-values back into either equation, such as [tex]\( y = x^2 - 2x - 4 \)[/tex].

For [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex]:

[tex]\[ y = \left( \frac{-1 + \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 + \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx -0.420164833920778 \][/tex]

For [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:

[tex]\[ y = \left( \frac{-1 - \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 - \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx 21.4201648339208 \][/tex]

So, the approximate [tex]\( y \)[/tex]-coordinates of the intersection points are:

[tex]\[ y \approx -0.420164833920778 \quad \text{and} \quad y \approx 21.4201648339208 \][/tex]

### 5. Finding the [tex]\( x \)[/tex]-coordinates of the Intersection Points

The [tex]\( x \)[/tex]-coordinates of the intersection points are:

[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]

In summary:

- The solutions [tex]\( x \)[/tex]-coordinates: [tex]\( x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts are [tex]\( -4 \)[/tex] and [tex]\( 9 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts are [tex]\( 1 + \sqrt{5} \)[/tex], [tex]\( 1 - \sqrt{5} \)[/tex], and [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the intersection points are approximately [tex]\( -0.420164833920778 \)[/tex] and [tex]\( 21.4201648339208 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the intersection points are [tex]\( \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( \frac{-1 - \sqrt{53}}{2} \)[/tex].