IDNLearn.com provides a user-friendly platform for finding answers to your questions. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
Alright, let’s solve this step by step for each case.
### Case 1: [tex]\( M = 13 \text{ kg}, m = 6 \text{ kg}, a = 11.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 11.4 \][/tex]
[tex]\[ T_1 = 127.4 + 148.2 \][/tex]
[tex]\[ T_1 = 275.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 6 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 6 \cdot 9.8 - 6 \cdot 11.4 \][/tex]
[tex]\[ T_2 = 58.8 - 68.4 \][/tex]
[tex]\[ T_2 = -9.6 \text{ N} \][/tex]
### Case 2: [tex]\( M = 13 \text{ kg}, m = 9 \text{ kg}, a = 1.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 1.4 \][/tex]
[tex]\[ T_1 = 127.4 + 18.2 \][/tex]
[tex]\[ T_1 = 145.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 9 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 9 \cdot 9.8 - 9 \cdot 1.4 \][/tex]
[tex]\[ T_2 = 88.2 - 12.6 \][/tex]
[tex]\[ T_2 = 75.6 \text{ N} \][/tex]
### Case 3: [tex]\( M = 13 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(13 - 12) \cdot 9.8}{13 + 12} \][/tex]
[tex]\[ a = \frac{1 \cdot 9.8}{25} \][/tex]
[tex]\[ a = \frac{9.8}{25} \][/tex]
[tex]\[ a = 0.392 \text{ m/s}^2 \][/tex]
### Case 4: [tex]\( M = 16 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 16 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(16 - 12) \cdot 9.8}{16 + 12} \][/tex]
[tex]\[ a = \frac{4 \cdot 9.8}{28} \][/tex]
[tex]\[ a = \frac{39.2}{28} \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
### Summary of Results:
- Case 1: [tex]\( T_1 = 275.6 \, \text{N}, \, T_2 = -9.6 \, \text{N} \)[/tex]
- Case 2: [tex]\( T_1 = 145.6 \, \text{N}, \, T_2 = 75.6 \, \text{N} \)[/tex]
- Case 3: [tex]\( a = 0.392 \, \text{m/s}^2 \)[/tex]
- Case 4: [tex]\( a = 1.4 \, \text{m/s}^2 \)[/tex]
These calculations are directly verifying the dynamics and tension in the system under the given conditions.
### Case 1: [tex]\( M = 13 \text{ kg}, m = 6 \text{ kg}, a = 11.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 11.4 \][/tex]
[tex]\[ T_1 = 127.4 + 148.2 \][/tex]
[tex]\[ T_1 = 275.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 6 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 6 \cdot 9.8 - 6 \cdot 11.4 \][/tex]
[tex]\[ T_2 = 58.8 - 68.4 \][/tex]
[tex]\[ T_2 = -9.6 \text{ N} \][/tex]
### Case 2: [tex]\( M = 13 \text{ kg}, m = 9 \text{ kg}, a = 1.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 1.4 \][/tex]
[tex]\[ T_1 = 127.4 + 18.2 \][/tex]
[tex]\[ T_1 = 145.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 9 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 9 \cdot 9.8 - 9 \cdot 1.4 \][/tex]
[tex]\[ T_2 = 88.2 - 12.6 \][/tex]
[tex]\[ T_2 = 75.6 \text{ N} \][/tex]
### Case 3: [tex]\( M = 13 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(13 - 12) \cdot 9.8}{13 + 12} \][/tex]
[tex]\[ a = \frac{1 \cdot 9.8}{25} \][/tex]
[tex]\[ a = \frac{9.8}{25} \][/tex]
[tex]\[ a = 0.392 \text{ m/s}^2 \][/tex]
### Case 4: [tex]\( M = 16 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 16 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(16 - 12) \cdot 9.8}{16 + 12} \][/tex]
[tex]\[ a = \frac{4 \cdot 9.8}{28} \][/tex]
[tex]\[ a = \frac{39.2}{28} \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
### Summary of Results:
- Case 1: [tex]\( T_1 = 275.6 \, \text{N}, \, T_2 = -9.6 \, \text{N} \)[/tex]
- Case 2: [tex]\( T_1 = 145.6 \, \text{N}, \, T_2 = 75.6 \, \text{N} \)[/tex]
- Case 3: [tex]\( a = 0.392 \, \text{m/s}^2 \)[/tex]
- Case 4: [tex]\( a = 1.4 \, \text{m/s}^2 \)[/tex]
These calculations are directly verifying the dynamics and tension in the system under the given conditions.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.