IDNLearn.com: Where your questions are met with thoughtful and precise answers. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.
Sagot :
Given the results, let’s determine for which pair of functions the exponential consistently grows at a faster rate than the quadratic over the interval [tex]\(0 \leq x \leq 5\)[/tex].
1. Define the Functions:
We have two functions:
- Quadratic function: [tex]\( f(x) = ax^2 + bx + c \)[/tex]
- Exponential function: [tex]\( g(x) = ae^{bx} \)[/tex]
2. Identify Coefficients:
- For the quadratic function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], [tex]\( c = 0 \)[/tex], resulting in [tex]\( f(x) = x^2 \)[/tex].
- For the exponential function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], resulting in [tex]\( g(x) = e^x \)[/tex].
3. Evaluate the Functions over the Interval [tex]\( 0 \leq x \leq 5 \)[/tex]:
The interval is divided into 1000 points for a finer comparison. For simplicity, let's look at the beginning, middle, and end values.
- Quadratic [tex]\( f(x) = x^2 \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 = 0 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( f(2.5) = (2.5)^2 = 6.25 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( f(5) = (5)^2 = 25 \)[/tex]
- Exponential [tex]\( g(x) = e^x \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = e^0 = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( g(2.5) \approx e^{2.5} \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( g(5) \approx e^5 \approx 148.4132 \)[/tex]
From these values, we see a rapid growth in the exponential function compared to the quadratic function.
4. Compare the Functions Over the Interval:
We inspect the values at specific points:
- At [tex]\( x = 0 \)[/tex]:
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( g(0) = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex]:
- [tex]\( f(2.5) = 6.25 \)[/tex]
- [tex]\( g(2.5) \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex]:
- [tex]\( f(5) = 25 \)[/tex]
- [tex]\( g(5) \approx 148.4132 \)[/tex]
Clearly, the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] at all inspected points within the interval.
5. Conclusion:
The exponential function grows at a consistently faster rate than the quadratic function over the interval [tex]\(0 \leq x \leq 5\)[/tex]:
The exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]. This conclusion holds for all values in the interval, as the exponential function's rate of growth continuously exceeds that of the quadratic function.
1. Define the Functions:
We have two functions:
- Quadratic function: [tex]\( f(x) = ax^2 + bx + c \)[/tex]
- Exponential function: [tex]\( g(x) = ae^{bx} \)[/tex]
2. Identify Coefficients:
- For the quadratic function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], [tex]\( c = 0 \)[/tex], resulting in [tex]\( f(x) = x^2 \)[/tex].
- For the exponential function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], resulting in [tex]\( g(x) = e^x \)[/tex].
3. Evaluate the Functions over the Interval [tex]\( 0 \leq x \leq 5 \)[/tex]:
The interval is divided into 1000 points for a finer comparison. For simplicity, let's look at the beginning, middle, and end values.
- Quadratic [tex]\( f(x) = x^2 \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 = 0 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( f(2.5) = (2.5)^2 = 6.25 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( f(5) = (5)^2 = 25 \)[/tex]
- Exponential [tex]\( g(x) = e^x \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = e^0 = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( g(2.5) \approx e^{2.5} \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( g(5) \approx e^5 \approx 148.4132 \)[/tex]
From these values, we see a rapid growth in the exponential function compared to the quadratic function.
4. Compare the Functions Over the Interval:
We inspect the values at specific points:
- At [tex]\( x = 0 \)[/tex]:
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( g(0) = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex]:
- [tex]\( f(2.5) = 6.25 \)[/tex]
- [tex]\( g(2.5) \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex]:
- [tex]\( f(5) = 25 \)[/tex]
- [tex]\( g(5) \approx 148.4132 \)[/tex]
Clearly, the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] at all inspected points within the interval.
5. Conclusion:
The exponential function grows at a consistently faster rate than the quadratic function over the interval [tex]\(0 \leq x \leq 5\)[/tex]:
The exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]. This conclusion holds for all values in the interval, as the exponential function's rate of growth continuously exceeds that of the quadratic function.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.