IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.

Using the statistical definition of entropy, what is the entropy of a system where [tex]\( W = 4 \)[/tex]?

A. [tex]\( 1.87 \times 10^{-23} \)[/tex] joules/kelvin
B. [tex]\( 1.56 \times 10^{-23} \)[/tex] joules/kelvin
C. [tex]\( 1.91 \times 10^{-23} \)[/tex] joules/kelvin
D. [tex]\( 2.07 \times 10^{-23} \)[/tex] joules/kelvin


Sagot :

The statistical definition of entropy in thermodynamics is given by the formula:

[tex]\[ S = k_B \cdot \ln(W) \][/tex]

where:
- [tex]\( S \)[/tex] is the entropy,
- [tex]\( k_B \)[/tex] is the Boltzmann constant ([tex]\( 1.38 \times 10^{-23} \)[/tex] joules per kelvin),
- [tex]\( W \)[/tex] is the number of possible microstates of the system.

Given:
- [tex]\( W = 4 \)[/tex]

Step-by-step solution:
1. Identify the constants and values given:
- Boltzmann constant, [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] joules per kelvin.
- Number of microstates, [tex]\( W = 4 \)[/tex].

2. Calculate the natural logarithm of the number of microstates:
- [tex]\( \ln(4) \)[/tex].

3. Multiply the Boltzmann constant by the natural logarithm of the number of microstates:
- [tex]\( S = 1.38 \times 10^{-23} \cdot \ln(4) \)[/tex].

Performing this calculation, we get:

[tex]\[ S \approx 1.91 \times 10^{-23} \text{ joules per kelvin} \][/tex]

Therefore, the correct answer is:

C. [tex]\( 1.91 \times 10^{-23} \)[/tex] joules/kelvin