Discover new perspectives and gain insights with IDNLearn.com. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Let's solve this in a step-by-step manner:
1. Identify the given data:
- Mass of copper ([tex]\(m_c\)[/tex]): [tex]\(95.0 \, \text{g}\)[/tex]
- Specific heat capacity of copper ([tex]\(c_c\)[/tex]): [tex]\(0.20 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of copper ([tex]\(T_{i,c}\)[/tex]): [tex]\(82.4^\circ \text{C}\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]): [tex]\(25.1^\circ \text{C}\)[/tex]
- Specific heat capacity of water ([tex]\(c_w\)[/tex]): [tex]\(4.18 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of water ([tex]\(T_{i,w}\)[/tex]): [tex]\(22.0^\circ \text{C}\)[/tex]
2. Calculate the change in temperature for copper ([tex]\(\Delta T_c\)[/tex]):
[tex]\[ \Delta T_c = T_f - T_{i,c} = 25.1^\circ \text{C} - 82.4^\circ \text{C} = -57.3^\circ \text{C} \][/tex]
3. Calculate the change in temperature for water ([tex]\(\Delta T_w\)[/tex]):
[tex]\[ \Delta T_w = T_f - T_{i,w} = 25.1^\circ \text{C} - 22.0^\circ \text{C} = 3.1^\circ \text{C} \][/tex]
4. Calculate the heat lost by the copper ([tex]\(q_c\)[/tex]):
[tex]\[ q_c = c_c \times m_c \times \Delta T_c \][/tex]
Plug in the values:
[tex]\[ q_c = 0.20 \, \text{J/g} \cdot ^\circ\text{C} \times 95.0 \, \text{g} \times (-57.3^\circ \text{C}) = 1088.7 \, \text{J} \][/tex]
Note: The heat lost by the copper is typically considered negative, but when calculating the absolute value of energy transferred, we use the positive value [tex]\(1088.7 \, \text{J}\)[/tex].
5. Relate the heat gained by the water to the heat lost by the copper:
[tex]\[ q_w = q_c \][/tex]
6. Set up the equation for the heat absorbed by the water:
[tex]\[ q_w = c_w \times m_w \times \Delta T_w \][/tex]
Since [tex]\( q_w = q_c \)[/tex]:
[tex]\[ 1088.7 \, \text{J} = 4.18 \, \text{J/g} \cdot ^\circ\text{C} \times m_w \times 3.1^\circ \text{C} \][/tex]
7. Solve for the mass of the water ([tex]\(m_w\)[/tex]):
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{4.18 \, \text{J/g} \cdot ^\circ\text{C} \times 3.1^\circ \text{C}} \][/tex]
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{12.958 \, \text{J/g}} = 84.01759530791786 \, \text{g} \][/tex]
8. Conclusion:
The mass of the water in the container was approximately [tex]\(84.0 \, \text{g}\)[/tex].
Therefore, the correct answer is [tex]\(84.0 \, \text{g } \text{H}_2 \text{O}\)[/tex].
1. Identify the given data:
- Mass of copper ([tex]\(m_c\)[/tex]): [tex]\(95.0 \, \text{g}\)[/tex]
- Specific heat capacity of copper ([tex]\(c_c\)[/tex]): [tex]\(0.20 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of copper ([tex]\(T_{i,c}\)[/tex]): [tex]\(82.4^\circ \text{C}\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]): [tex]\(25.1^\circ \text{C}\)[/tex]
- Specific heat capacity of water ([tex]\(c_w\)[/tex]): [tex]\(4.18 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of water ([tex]\(T_{i,w}\)[/tex]): [tex]\(22.0^\circ \text{C}\)[/tex]
2. Calculate the change in temperature for copper ([tex]\(\Delta T_c\)[/tex]):
[tex]\[ \Delta T_c = T_f - T_{i,c} = 25.1^\circ \text{C} - 82.4^\circ \text{C} = -57.3^\circ \text{C} \][/tex]
3. Calculate the change in temperature for water ([tex]\(\Delta T_w\)[/tex]):
[tex]\[ \Delta T_w = T_f - T_{i,w} = 25.1^\circ \text{C} - 22.0^\circ \text{C} = 3.1^\circ \text{C} \][/tex]
4. Calculate the heat lost by the copper ([tex]\(q_c\)[/tex]):
[tex]\[ q_c = c_c \times m_c \times \Delta T_c \][/tex]
Plug in the values:
[tex]\[ q_c = 0.20 \, \text{J/g} \cdot ^\circ\text{C} \times 95.0 \, \text{g} \times (-57.3^\circ \text{C}) = 1088.7 \, \text{J} \][/tex]
Note: The heat lost by the copper is typically considered negative, but when calculating the absolute value of energy transferred, we use the positive value [tex]\(1088.7 \, \text{J}\)[/tex].
5. Relate the heat gained by the water to the heat lost by the copper:
[tex]\[ q_w = q_c \][/tex]
6. Set up the equation for the heat absorbed by the water:
[tex]\[ q_w = c_w \times m_w \times \Delta T_w \][/tex]
Since [tex]\( q_w = q_c \)[/tex]:
[tex]\[ 1088.7 \, \text{J} = 4.18 \, \text{J/g} \cdot ^\circ\text{C} \times m_w \times 3.1^\circ \text{C} \][/tex]
7. Solve for the mass of the water ([tex]\(m_w\)[/tex]):
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{4.18 \, \text{J/g} \cdot ^\circ\text{C} \times 3.1^\circ \text{C}} \][/tex]
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{12.958 \, \text{J/g}} = 84.01759530791786 \, \text{g} \][/tex]
8. Conclusion:
The mass of the water in the container was approximately [tex]\(84.0 \, \text{g}\)[/tex].
Therefore, the correct answer is [tex]\(84.0 \, \text{g } \text{H}_2 \text{O}\)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.