IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
To determine the final temperature of the bomb calorimeter after the combustion process, we need to use the formula for heat transfer:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.