From personal advice to professional guidance, IDNLearn.com has the answers you seek. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
Given the problem, let's break down the question to find the answer:
1. Identify the known values:
- Heat ([tex]\(q\)[/tex]): [tex]\(3000.0 \, J\)[/tex]
- Mass ([tex]\(m\)[/tex]): [tex]\(0.465 \, kg\)[/tex] (which we need to convert to grams, since specific heat is typically in [tex]\(\frac{J}{g \cdot ^\circ C}\)[/tex]). [tex]\(0.465 \, kg = 465.0 \, g\)[/tex]
- Initial temperature ([tex]\(T_1\)[/tex]): [tex]\(50.0^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_2\)[/tex]): [tex]\(100.0^{\circ} C\)[/tex]
2. Calculate the change in temperature ([tex]\(\Delta T\)[/tex]):
- [tex]\(\Delta T = T_2 - T_1 = 100.0^{\circ} C - 50.0^{\circ} C = 50.0^{\circ} C\)[/tex]
3. Use the formula for heat transfer [tex]\(q = m C_p \Delta T\)[/tex] to solve for specific heat ([tex]\(C_p\)[/tex]):
Rearrange the formula to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ C_p = \frac{3000.0 \, J}{465.0 \, g \times 50.0^{\circ} C} \][/tex]
5. Calculate [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{3000.0}{465.0 \times 50.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p = \frac{3000.0}{23250.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p \approx 0.129 \, \frac{J}{g \cdot ^\circ C} \][/tex]
Hence, the specific heat of the substance is approximately [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
Considering the multiple choices given:
- [tex]\(0.00775 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.0600 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.155 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
The correct answer is [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
1. Identify the known values:
- Heat ([tex]\(q\)[/tex]): [tex]\(3000.0 \, J\)[/tex]
- Mass ([tex]\(m\)[/tex]): [tex]\(0.465 \, kg\)[/tex] (which we need to convert to grams, since specific heat is typically in [tex]\(\frac{J}{g \cdot ^\circ C}\)[/tex]). [tex]\(0.465 \, kg = 465.0 \, g\)[/tex]
- Initial temperature ([tex]\(T_1\)[/tex]): [tex]\(50.0^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_2\)[/tex]): [tex]\(100.0^{\circ} C\)[/tex]
2. Calculate the change in temperature ([tex]\(\Delta T\)[/tex]):
- [tex]\(\Delta T = T_2 - T_1 = 100.0^{\circ} C - 50.0^{\circ} C = 50.0^{\circ} C\)[/tex]
3. Use the formula for heat transfer [tex]\(q = m C_p \Delta T\)[/tex] to solve for specific heat ([tex]\(C_p\)[/tex]):
Rearrange the formula to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ C_p = \frac{3000.0 \, J}{465.0 \, g \times 50.0^{\circ} C} \][/tex]
5. Calculate [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{3000.0}{465.0 \times 50.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p = \frac{3000.0}{23250.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p \approx 0.129 \, \frac{J}{g \cdot ^\circ C} \][/tex]
Hence, the specific heat of the substance is approximately [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
Considering the multiple choices given:
- [tex]\(0.00775 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.0600 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.155 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
The correct answer is [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.