IDNLearn.com offers a unique blend of expert answers and community-driven knowledge. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
To determine if a parallelogram [tex]\(ABCD\)[/tex] is a rectangle, we need to examine the properties of its sides and angles. Specifically, in addition to the condition that opposite sides are parallel (which is inherent in any parallelogram), a rectangle requires that adjacent sides are perpendicular to each other. This perpendicularity criterion is mathematically determined by the slopes of the sides.
1. Parallelism of Opposite Sides:
The slopes of opposite sides must be equal for the parallelogram to hold its shape:
[tex]\[ \text{Slope of } AB = \text{Slope of } CD \quad \text{and} \quad \text{Slope of } BC = \text{Slope of } DA. \][/tex]
2. Perpendicularity of Adjacent Sides:
The product of the slopes of two perpendicular lines is [tex]\(-1\)[/tex]. Therefore, the product of the slopes of adjacent sides must be [tex]\(-1\)[/tex].
Let's analyze the options given:
- Option A:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_3-y_2}{x_3-x_2}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_3-y_2}{x_3-x_2}\right)=-1 \][/tex]
This suggests checking the slope of [tex]\(CD\)[/tex] equals the slope of [tex]\(BC\)[/tex] (parallelism), and then verifying they are perpendicular, which doesn't check all adjacent pairs required.
- Option B:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_2-y_1}{x_2-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1}\right)=-1 \][/tex]
This correctly examines if opposite sides (like [tex]\(CD\)[/tex] and [tex]\(AB\)[/tex]) are parallel, and checks if the slopes of [tex]\(CD\)[/tex] and [tex]\(AB\)[/tex] (or any appropriate adjacent sides pair) multiply to [tex]\(-1\)[/tex], ensuring perpendicularity.
- Option C:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_2-y_1}{x_2-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_3-y_2}{x_3-x_2}\right)=-1 \][/tex]
This closely resembles option B but it incorrectly places perpendicularity check involving non-adjacent slopes.
- Option D:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_3-y_1}{x_3-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1}\right)=-1 \][/tex]
This would imply testing slopes involving different vertices' connections and does not symmetrically validate adjacency/pairing needed for parallelogram sides correctly.
Hence, option B ensures parallelism and perpendicularity in the correct adjacent pairings context verifying [tex]\(ABCD\)[/tex] being a rectangle:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3} = \frac{y_2-y_1}{x_2-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1}\right) = -1. \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. Parallelism of Opposite Sides:
The slopes of opposite sides must be equal for the parallelogram to hold its shape:
[tex]\[ \text{Slope of } AB = \text{Slope of } CD \quad \text{and} \quad \text{Slope of } BC = \text{Slope of } DA. \][/tex]
2. Perpendicularity of Adjacent Sides:
The product of the slopes of two perpendicular lines is [tex]\(-1\)[/tex]. Therefore, the product of the slopes of adjacent sides must be [tex]\(-1\)[/tex].
Let's analyze the options given:
- Option A:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_3-y_2}{x_3-x_2}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_3-y_2}{x_3-x_2}\right)=-1 \][/tex]
This suggests checking the slope of [tex]\(CD\)[/tex] equals the slope of [tex]\(BC\)[/tex] (parallelism), and then verifying they are perpendicular, which doesn't check all adjacent pairs required.
- Option B:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_2-y_1}{x_2-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1}\right)=-1 \][/tex]
This correctly examines if opposite sides (like [tex]\(CD\)[/tex] and [tex]\(AB\)[/tex]) are parallel, and checks if the slopes of [tex]\(CD\)[/tex] and [tex]\(AB\)[/tex] (or any appropriate adjacent sides pair) multiply to [tex]\(-1\)[/tex], ensuring perpendicularity.
- Option C:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_2-y_1}{x_2-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_3-y_2}{x_3-x_2}\right)=-1 \][/tex]
This closely resembles option B but it incorrectly places perpendicularity check involving non-adjacent slopes.
- Option D:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3}=\frac{y_3-y_1}{x_3-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1}\right)=-1 \][/tex]
This would imply testing slopes involving different vertices' connections and does not symmetrically validate adjacency/pairing needed for parallelogram sides correctly.
Hence, option B ensures parallelism and perpendicularity in the correct adjacent pairings context verifying [tex]\(ABCD\)[/tex] being a rectangle:
[tex]\[ \left(\frac{y_4-y_3}{x_4-x_3} = \frac{y_2-y_1}{x_2-x_1}\right) \quad \text{and} \quad \left(\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1}\right) = -1. \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.