Get expert advice and community support for your questions on IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

A stock solution is made by dissolving 66.05 g of [tex]\((NH_4)_2SO_4\)[/tex] in enough water to make 250 mL of solution. A 10.0 mL sample of this solution is then diluted to 50.0 mL. Given that the molar mass of [tex]\((NH_4)_2SO_4\)[/tex] is 132.1 g/mol, what is the concentration of the new solution?

Use [tex]\(M_i V_i = M_f V_f\)[/tex] and molarity [tex]\(=\frac{\text{moles of solute}}{\text{liters of solution}}\)[/tex].

A. 0.400 M
B. 1.60 M
C. 5.00 M
D. 10.0 M


Sagot :

To solve the problem step-by-step, let's follow these logical steps:

### Step 1: Calculate the moles of solute in the initial solution.

Given:
- Mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]): [tex]\( 66.05 \)[/tex] grams
- Molar mass of [tex]\((NH_4)_2SO_4\)[/tex]: [tex]\( 132.1 \)[/tex] g/mol

We can calculate the moles of [tex]\((NH_4)_2SO_4\)[/tex] using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]

[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} \][/tex]

[tex]\[ \text{moles of solute} = 0.5 \text{ moles} \][/tex]

### Step 2: Calculate the molarity of the initial solution.

Given:
- Volume of the initial solution: [tex]\( 250 \)[/tex] mL (which is [tex]\( 0.250 \)[/tex] L)
- Moles of solute: [tex]\( 0.5 \)[/tex] moles

We use the formula for molarity (concentration, [tex]\(M\)[/tex]):
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]

[tex]\[ M_{\text{initial}} = \frac{0.5 \text{ moles}}{0.250 \text{ L}} \][/tex]

[tex]\[ M_{\text{initial}} = 2.0 \text{ M} \][/tex]

### Step 3: Calculate the molarity of the final diluted solution using [tex]\(M_i V_i = M_f V_f\)[/tex].

Given:
- The initial sample volume ([tex]\(V_i\)[/tex]): [tex]\( 10.0 \)[/tex] mL (which is [tex]\( 0.010 \)[/tex] L)
- The final volume of the diluted solution ([tex]\(V_f\)[/tex]): [tex]\( 50.0 \)[/tex] mL (which is [tex]\( 0.050 \)[/tex] L)
- The molarity of the initial solution: [tex]\( 2.0 \)[/tex] M

Using the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]

Solving for [tex]\( M_f \)[/tex] (final molarity):
[tex]\[ M_f = \frac{M_i V_i}{V_f} \][/tex]

[tex]\[ M_f = \frac{2.0 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} \][/tex]

[tex]\[ M_f = \frac{0.02 \text{ M \cdot L}}{0.050 \text{ L}} \][/tex]

[tex]\[ M_f = 0.4 \text{ M} \][/tex]

Thus, after diluting, the concentration of the new solution is [tex]\( 0.4 \text{ M} \)[/tex].

So, the correct answer is:
[tex]\[ 0.400 \text{ M} \][/tex]