IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
To find the gravitational force between the two masses, we will use Newton's law of universal gravitation, which is expressed by the formula:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\(\vec{F}\)[/tex] is the gravitational force between the masses,
- [tex]\(G\)[/tex] is the gravitational constant [tex]\(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2\)[/tex],
- [tex]\(m_1\)[/tex] is the mass of the first object ([tex]\(912 \, \text{kg}\)[/tex]),
- [tex]\(m_2\)[/tex] is the mass of the second object ([tex]\(878 \, \text{kg}\)[/tex]),
- [tex]\(r\)[/tex] is the distance between the centers of the two masses ([tex]\(25.4 \, \text{m}\)[/tex]).
Now, let's go through the steps to calculate the force:
1. Substitute the given values into the formula:
[tex]\[ \vec{F} = \left(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2\right) \times \frac{(912 \, \text{kg}) \times (878 \, \text{kg})}{(25.4 \, \text{m})^2} \][/tex]
2. Calculate the product of the masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]:
[tex]\[ 912 \times 878 = 801,936 \, \text{kg}^2 \][/tex]
3. Square the distance [tex]\(r\)[/tex]:
[tex]\[ (25.4)^2 = 645.16 \, \text{m}^2 \][/tex]
4. Calculate the fraction:
[tex]\[ \frac{801,936}{645.16} = 1,243.109 \][/tex]
5. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \times 1,243.109 = 8.278425692851386 \times 10^{-8} \, \text{N} \][/tex]
So, the gravitational force between the two masses in scientific notation is:
[tex]\[ \vec{F} = 8.278425692851386 \times 10^{-8} \, \text{N} \][/tex]
If we express the force in the form [tex]\([\text{magnitude}] \times 10^{[\text{exponent}]}\)[/tex]:
[tex]\[ \vec{F} \approx 8.278 \times 10^{-8} \, \text{N} \][/tex]
Thus, the gravitational force between the two masses is:
[tex]\[ \boxed{8.278 \times 10^{-8} \, \text{N}} \][/tex]
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\(\vec{F}\)[/tex] is the gravitational force between the masses,
- [tex]\(G\)[/tex] is the gravitational constant [tex]\(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2\)[/tex],
- [tex]\(m_1\)[/tex] is the mass of the first object ([tex]\(912 \, \text{kg}\)[/tex]),
- [tex]\(m_2\)[/tex] is the mass of the second object ([tex]\(878 \, \text{kg}\)[/tex]),
- [tex]\(r\)[/tex] is the distance between the centers of the two masses ([tex]\(25.4 \, \text{m}\)[/tex]).
Now, let's go through the steps to calculate the force:
1. Substitute the given values into the formula:
[tex]\[ \vec{F} = \left(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2\right) \times \frac{(912 \, \text{kg}) \times (878 \, \text{kg})}{(25.4 \, \text{m})^2} \][/tex]
2. Calculate the product of the masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]:
[tex]\[ 912 \times 878 = 801,936 \, \text{kg}^2 \][/tex]
3. Square the distance [tex]\(r\)[/tex]:
[tex]\[ (25.4)^2 = 645.16 \, \text{m}^2 \][/tex]
4. Calculate the fraction:
[tex]\[ \frac{801,936}{645.16} = 1,243.109 \][/tex]
5. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \times 1,243.109 = 8.278425692851386 \times 10^{-8} \, \text{N} \][/tex]
So, the gravitational force between the two masses in scientific notation is:
[tex]\[ \vec{F} = 8.278425692851386 \times 10^{-8} \, \text{N} \][/tex]
If we express the force in the form [tex]\([\text{magnitude}] \times 10^{[\text{exponent}]}\)[/tex]:
[tex]\[ \vec{F} \approx 8.278 \times 10^{-8} \, \text{N} \][/tex]
Thus, the gravitational force between the two masses is:
[tex]\[ \boxed{8.278 \times 10^{-8} \, \text{N}} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.